Advertisement

Plant Cell, Tissue and Organ Culture (PCTOC)

, Volume 139, Issue 3, pp 429–453 | Cite as

Current advances and future directions in genetic enhancement of a climate resilient food legume crop, cowpea (Vigna unguiculata L. Walp.)

  • Meenakshi Sindhu
  • Anil Kumar
  • Honey Yadav
  • Darshna Chaudhary
  • Ranjana Jaiwal
  • Pawan K. JaiwalEmail author
Review
  • 185 Downloads

Abstract

Cowpea (Vigna unguiculata (L.) Walp.) is a warm-season legume crop which is widely grown by resource-poor small and marginal farmers of Sub-Saharan Africa, Asia, Central and South America for food and nutrition security, income generation and soil fertility improvement. Its productivity in its traditionally growing areas is constrained by a wide range of biotic (parasitic weeds, insect pests, viruses, fungal and bacterial pathogens, nematodes and aphids) and abiotic (drought, high temperature, salinity, low phosphorus) stresses. Cowpea’s genomic resources are limited and do not contain resistance sources for some of the stresses especially the most damaging insect pests and viruses. Widening its gene pool through interspecific hybridization including with wild relatives has met with limited success and this has encouraged adoption of genetic transformation leading to transfer of transgenes for resistance to Maruca pod borer, and bruchids, viruses, root-knot nematodes, herbicides and salt and drought stresses but only recently pod borer resistant Bt cowpea is released for commercial cultivation in Nigeria. The current cowpea gene transfer approaches are still inefficient, genotype and explant (tissue) dependent, and introduced mostly a single gene at a time. The recent progress in genomics, transcriptomics and small RNA studies has led to the identification of novel genes for various agronomic traits. The improvement in gene transfer and regeneration system would overcome the bottlenecks in production of transgenic- and gene-edited cowpea plants resilient to emerging pests, pathogens and abiotic stresses with better nutritional quality. The present review discusses the current advances in cowpea genomics, transcriptomics and development of transgenic plants for various desirable attributes and highlights the future directions for improvement in its yield and quality.

Keywords

Cowpea Genomics Transcriptomics Genetic transformation Transgenic plants Gene editing Biotic and abiotic stresses Nutritional quality 

Notes

Acknowledgements

MS, AK and HY are thankful to DST, New Delhi, MDU, Rohtak and UGC, New Delhi for the Award of Inspire Fellowship, University Research Scholarship and Senior Research Fellowship, respectively. PKJ is grateful to UGC, New Delhi for the Award of Basic Science Research (BSR) Faculty Fellowship and DBT, New Delhi for financial support to his laboratory.

Author contributions

MS, AK and HY collected the literature, wrote the manuscript and designed the tables. DS, RJ and PKJ conceived the idea, designed the outline of the study, corrected the manuscript and provided critical comments. All the authors have read and approved the manuscript.

Compliance with ethical standards

Conflict of interest

The authors have no conflict of interest.

Supplementary material

11240_2019_1695_MOESM1_ESM.docx (38 kb)
Supplementary material 1 (DOCX 37 kb)
11240_2019_1695_MOESM2_ESM.docx (28 kb)
Supplementary material 2 (DOCX 28 kb)

References

  1. Aasim M, Khawar KM, Özcan S (2013) Production of herbicide-resistant cowpea (Vigna unguiculata L.) transformed with the bar gene. Turk J Biol 37:472–478Google Scholar
  2. Adekola OF, Oluleye F (2007) Induction of genetic variation in cowpea [Vigna unguiculata (L.)Walp.] by gamma radiation. Asian J Plant Sci 6:869–873Google Scholar
  3. Adesoye A, Machuka J, Togun A (2008) CRY1AB transgenic cowpea obtained by nodal electroporation. Afr J Biotechnol 7:3200–3210Google Scholar
  4. Adesoye A, Togun AO, Machuka J (2010) Transformation of cowpea (Vigna unguiculata L. Walp.) by Agrobacterium infiltration. J Appl Biosci 30:1845–1860Google Scholar
  5. Agbicodo EM, Fatokun CA, Muranaka S, Visser RGF (2009) Breeding drought tolerant cowpea: constraints, accomplishments and future prospects. Euphytica 167:353–370Google Scholar
  6. Ahmed FE, Hall AE, DeMason DA (1992) Heat injury during floral development in cowpea (Vigna unguiculata, Fabaceae). Am J Bot 79:784–791Google Scholar
  7. Ajeigbe HA, Singh BB, Emechebe AM (2008) Field evaluation of improved cowpea lines for resistance to bacterial blight, virus and striga under natural infestation in the West African Savannas. Afr J Biotechnol 7:3563–3568Google Scholar
  8. Akella V, Lurquin PF (1993) Expression in cowpea seedlings of chimeric transgenes after electroporation into seed-derived embryos. Plant Cell Rep 12:110–117PubMedGoogle Scholar
  9. Ali MA, Azeem F, Abbas A, Joyia FA, Li H, Dababat AA (2017) Transgenic strategies for enhancement of nematode resistance in plants. Front Plant Sci 8:750.  https://doi.org/10.3389/fpls.2017.00750 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Aly R (2007) Conventional and biotechnological approaches for control of parasitic weeds. Vitro Cell Dev Biol Plant 43:304–317Google Scholar
  11. Arumuganathan K, Earle E (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218Google Scholar
  12. Ayala CC, Orozco AJJ, Tatis HA (2013) Mecanismos de adaptación a sequía en caupí (Vigna unguiculata (L.) Walp.). Una revisión. Rev Colomb Cienc Hortíc 7:277–288Google Scholar
  13. Ba MN, Huesing JE, Tamò M, Higgins TJ, Pittendrigh BR, Murdock LL (2018) An assessment of the risk of Bt-cowpea to non-target organisms in West Africa. J Pest Sci 91:1165–1179Google Scholar
  14. Badiane FA, Diouf M, Diouf D (2014) Cowpea. In: Singh M, Bisht IS, Dutta M (eds) Broadening the genetic base of grain legumes. Springer, New Delhi, pp 95–114Google Scholar
  15. Bado S, Forster BP, Nielen S, Ali AM, Lagoda PJL, Till BJ, Laimer M (2015) Plant mutation breeding: current progress and future assessment. Plant Breed Rev.  https://doi.org/10.1002/9781119107743.ch02 CrossRefGoogle Scholar
  16. Bakshi S, Sahoo L (2013) How relevant is recalcitrance for the recovery of transgenic cowpea: implications of selection strategies. J Plant Growth Regul 32:148–158Google Scholar
  17. Bakshi S, Sadhukhan A, Mishra S, Sahoo L (2011) Improved Agrobacterium-mediated transformation of cowpea via sonication and vacuum infiltration. Plant Cell Rep 30:2281–2292PubMedGoogle Scholar
  18. Bakshi S, Saha B, Roy NK, Mishra S, Panda SK, Sahoo L (2012) Successful recovery of transgenic cowpea (Vigna unguiculata) using the 6-phosphomannose isomerase gene as the selectable marker. Plant Cell Rep 31:1093–1103PubMedGoogle Scholar
  19. Banerjee S, Banerjee A, Gill SS, Gupta OP, Dahuja A, Jain PK, Sirohi A (2017) RNA interference: a novel source of resistance to combat plant parasitic nematodes. Front Plant Sci 8:834.  https://doi.org/10.3389/fpls.2017.00834 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Barbosa MAM, Lobato AKS, Tan DKY, Viana GDM, Coelho KNN, Barbosa JRS, Moraes MCHS, Costa RCL, Santos Filho BG, Oliveira Neto CF (2013) Bradyrhizobium improves nitrogen assimilation, osmotic adjustment and growth in contrasting cowpea cultivars under drought. Aust J Crop Sci 7:1983–1989Google Scholar
  21. Barrera-Figueroa BE, Gao L, Diop NN, Wu Z, Ehlers JD, Roberts PA, Close TJ, Zhu JK, Liu R (2011) Identification and comparative analysis of drought-associated microRNAs in two cowpea genotypes. BMC Plant Biol 11:127.  https://doi.org/10.1186/1471-2229-11-127 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Bett B, Gollasch S, Moore A, James W, Armstrong J, Walsh T, Higgins TJ (2017) Transgenic cowpeas (Vigna unguiculata L. Walp.) expressing Bacillus thuringiensis Vip3Ba protein are protected against the Maruca pod borer (Maruca vitrata). Plant Cell Tissue Organ Cult 131:335–345Google Scholar
  23. Bett B, Gollasch S, Moore A, Harding R, Higgins TJV (2019) An improved transformation system for cowpea (Vigna unguiculata L. Walp.) via sonication and a kanamycin–geneticin selection regime. Front Plant Sci.  https://doi.org/10.3389/fpls.2019.00219 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Borrelli VMG, Brambilla V, Rogowsky P, Marocco A, Lanubile A (2018) The enhancement of plant disease resistance using CRISPR/Cas9 technology. Front Plant Sci 9:1245.  https://doi.org/10.3389/fpls.2018.01245 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Boukar O, Fatokun CA, Roberts PA, Abberton M, Huynh BL, Close TJ, Ehlers JD (2015) Cowpea. In: De Ron AM (ed) Grain legumes, hand book of plant breeding 10. Springer, New York, pp 219–250.  https://doi.org/10.1007/978-1-4939-2797-5_7 CrossRefGoogle Scholar
  26. Boukar O, Fatokun CA, Huynh BL, Roberts PA, Close TJ (2016) Genomic tools in cowpea breeding programs: status and perspectives. Front Plant Sci 7:757.  https://doi.org/10.3389/fpls.2016.00757 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Boukar O, Belko N, Chamarthi S, Togola A, Batieno J, Owusu E, Fatokun C (2018) Cowpea (Vigna unguiculata): genetics, genomics and breeding. Plant Breed.  https://doi.org/10.1111/pbr.12589 CrossRefGoogle Scholar
  28. Carvalho M, Lino Neto T, Rosa E, Carnide V (2017) Cowpea: a legume crop for a challenging environment. J Sci Food Agric 97:4273–4284PubMedGoogle Scholar
  29. Ceasar SA, Rajan V, Prykhozhij SV, Berman JN, Ignacimuthu S (2016) Insert, remove or replace: a highly advanced genome editing system using CRISPR/Cas9. Biochim Biophys Acta Mol Cell Res 1863:2333–2344.  https://doi.org/10.1016/j.bbamcr.2016.06.009 CrossRefGoogle Scholar
  30. Chakraborti D, Sarkar A, Mondal HA, Das S (2009) Tissue specific expression of potent insecticidal, Allium sativum leaf agglutinin (ASAL) in important pulse crop, chickpea (Cicer arietinum L.) to resist the phloem feeding Aphis craccivora. Transgenic Res 18:529–544PubMedGoogle Scholar
  31. Chakroun M, Banyuls N, Bel Y, Escriche B, Ferre J (2016) Bacterial vegetative insecticidal proteins (Vip) from entomopathogenic bacteria. Microbiol Mol Biol Rev 80:329–350PubMedPubMedCentralGoogle Scholar
  32. Chaudhury D, Madanpotra S, Jaiwal R, Saini R, Kumar PA, Jaiwal PK (2007) Agrobacterium tumefaciens-mediated high frequency genetic transformation of an Indian cowpea (Vigna unguiculata L. Walp.) cultivar and transmission of transgenes into progeny. Plant Sci 172:692–700Google Scholar
  33. Chaudhary D, Sainger M, Sahoo L, Jaiwal PK (2011) Genetic transformation of Vigna species: current status and future perspectives. In: Tomooka N, Vaughan DA (eds) The 14th NIAS international workshop on genetic resources. NIAS, Tsukuba, pp 41–48Google Scholar
  34. Che P, Anand A, Wu E, Sander JD, Simon MK, Zhu W, Sigmund AL, Zastrow-Hayes G, Miller M, Liu D, Lawit SJ, Zhao Z-Y, Albertsen MC, Jones TJ (2018) Developing a flexible, high-efficiency Agrobacterium-mediated sorghum transformation system with broad application. Plant Biotechnol J 16:1388–1395.  https://doi.org/10.1111/pbi.12879 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Che P, Chang S, Simon MK, Zhang Z, Shaharyar A, Ourada J, O’Neill D, Torres-Mendoza M, Guo Y, Marasigan KM, Vielle-Calzada J-P, Ozias-Akins P, Albertsen MC, Jones TJ (2019) Developing a rapid and highly efficient cowpea regeneration and transformation system using embryonic axis explants. BioRxiv.  https://doi.org/10.1101/738971 CrossRefGoogle Scholar
  36. Chen X, Laudeman TW, Rushton PJ, Spraggins TA, Timko MP (2007) CGKB: an annotation knowledge base for cowpea (Vigna unguiculata L.) methylation filtered genomic genespace sequences. BMC Bioinform 8:1–9Google Scholar
  37. Cisse N, Ndiaye M, Thiaw S, Hall AE (1997) Registration of ‘Melakh’ cowpea. Crop Sci 37:1978Google Scholar
  38. Citadin CT, Cruz ARR, Aragão FJL (2013) Development of transgenic imazapyr-tolerant cowpea (Vigna unguiculata). Plant Cell Rep 32:537–543PubMedGoogle Scholar
  39. Close TJ (2019) Cowpea: a warm season legume and its genome. Legume Perspect 15:9–11Google Scholar
  40. Contour-Ansel D, Torres-Franklin ML, Cruz De Carvalho MH (2006) Glutathione reductase in leaves of cowpea: cloning of two cDNAs, expression and enzymatic activity under progressive drought stress, desiccation and abscisic acid treatment. Ann Bot 98:1279–1287PubMedPubMedCentralGoogle Scholar
  41. Cruz ARR, Aragao FJL (2014) RNAi based enhanced resistance to cowpea severe mosaic virus and cowpea aphid borne mosaic virus in transgenic cowpea. Plant Pathol 63:831–837Google Scholar
  42. Cullis C, Kunert KJ (2017) Unlocking the potential of orphan legumes. J Exp Bot 68:1895–1903.  https://doi.org/10.1093/jxb/erw437 CrossRefPubMedGoogle Scholar
  43. D’Arcy-Lameta A, Ferrari-Iliou R, Contour-Ansel D, Pham-Thi AT, Zuily-Fodil Y (2006) Isolation and characterization of four ascorbate peroxidase cDNA responsive to water deficit in cowpea leaves. Ann Bot 97:133–140PubMedPubMedCentralGoogle Scholar
  44. da Costa LRC, Lobato AKDS, da Silveira JAG, Laughinghouse HD IV (2011) ABA-mediated proline synthesis in cowpea leaves exposed to water deficiency and rehydration. Turk J Agric For 35:309–317Google Scholar
  45. Damiri BV, Al-Shahwan IM, Al-Saleh MA, Abdalla OA, Amer MA (2013) Identification and characterization of cowpea aphid-borne mosaic virus isolates in Saudi Arabia. J Plant Pathol 95:79–85Google Scholar
  46. De Ronde JA, Spreeth MH (2007) Development and evaluation of drought resistant mutant germplasm of Vigna unguiculata. Water SA 33:381–386Google Scholar
  47. Dhanasekar P, Reddy KS (2015) A novel mutation in TFL1 homolog affecting determinacy in cowpea (Vigna unguiculata). Mol Genet Genomics 290:55–65.  https://doi.org/10.1007/s00438-014-0899-0 CrossRefPubMedGoogle Scholar
  48. Diop NN, Kidric M, Repellin A, Gareil M, D’Arcy-Lameta A, Pham Thi AT, Zuily-Fodil Y (2004) A multicystatin is induced by drought-stress in cowpea (Vigna unguiculata (L.) Walp.) leaves. FEBS Lett 577:545–550PubMedGoogle Scholar
  49. Djami-Tchatchou AT, Sanan-Mishra N, Ntushelo K, Dubery IA (2017) Functional roles of microRNAs in agronomically important plants—potential as targets for crop improvement and protection. Front Plant Sci 8:378.  https://doi.org/10.3389/fpls.2017.00378 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Ehlers JD, Matthews WC, Hall AE, Roberts PA (2002) Breeding and evaluation of cowpeas with high levels of broad-based resistance to root-knot nematodes. In: Fatokun CA, Tarawali SA, Singh BB, Kormawa PM, Tamò M (eds) Challenges and opportunities for enhancing sustainable cowpea production. International Institute of Tropical Agriculture, Ibadan, pp 41–51Google Scholar
  51. El-Maarouf H, Zuily-Fodil Y, Gareil M, d’Arcy-Lameta A, Pham-Thi AT (1999) Enzymatic activity and gene expression under water stress of phospholipase D in two cultivars of Vigna unguiculata L. Walp. differing in drought tolerance. Plant Mol Biol 39:1257–1265PubMedGoogle Scholar
  52. El-Maarouf H, d’Arcy-Lameta A, Gareil M, Zuily-Fodil Y, Pham-Thi AT (2001) Cloning and expression under drought of cDNAs coding for two PI-PLCs in cowpea leaves. Plant Physiol Biochem 39:167–172Google Scholar
  53. Fan Q, Niroula M, Feldstein PA, Bruening G (2011) Participation of the cowpea mosaic virus protease in eliciting extreme resistance. Virology 417:71–78PubMedGoogle Scholar
  54. FAOSTAT F (2016) Agriculture Organization of the United Nations Statistics Division. Economic and Social Development Department, RomeGoogle Scholar
  55. Fatokun CA (2002) Breeding cowpea for resistance to insect pests: attempted crosses between cowpea and Vigna vexillata. In: Fatokun CA, Tarawali SA, Singh BB, Kormawa PM, Tamò M (eds) Challenges and opportunities for enhancing sustainable cowpea production. International Institute of Tropical Agriculture, Ibadan, pp 52–61Google Scholar
  56. Garcia JA, Hille J, Goldbach R (1986) Transformation of cowpea (Vigna unguiculata) cells with an antibiotic resistance gene using a Ti-plasmid derived vector. Plant Sci 44:37–46Google Scholar
  57. Garcia JA, Hille J, Vos P, Goldbach R (1987) Transformation of cowpea (Vigna unguiculata) with a full-length DNA copy of cowpea mosaic virus M-RNA. Plant Sci 48:89–98Google Scholar
  58. Gazendam I, Oelofse D (2007) Isolation of cowpea genes conferring drought tolerance: construction of a cDNA drought expression library. Water SA 33:387–391Google Scholar
  59. Girija M, Dhanavel D (2009) Mutagenic effectiveness and efficiency of gamma rays, ethyl methane sulphonate and their combined treatments in cowpea (Vigna unguiculata L. Walp.). Glob J Mol Sci 4:68–75Google Scholar
  60. Gonçalves A, Goufo P, Barros A, Domínguez-Perles R, Trindade H, Rosa EA, Rodrigues M (2016) Cowpea (Vigna unguiculata L. Walp.), a renewed multipurpose crop for a more sustainable agri-food system: nutritional advantages and constraints. J Sci Food Agric 96:2941–2951PubMedGoogle Scholar
  61. Goufo P, Moutinho-Pereira JM, Jorge TF, Correia CM, Oliveira MR, Rosa EAS, António C, Trindade H (2017) Cowpea (Vigna unguiculata L. Walp.) metabolomics: osmoprotection as a physiological strategy for drought stress resistance and improved yield. Front Plant Sci 8:586.  https://doi.org/10.3389/fpls.2017.00586 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Hall AE (2004) Comparative ecophysiology of cowpea, common bean, and peanut. In: Nguyen TH, Blum A (eds) Physiology and biotechnology integration for plant breeding. CRC Press, Boca Raton, pp 271–325.  https://doi.org/10.1201/9780203022030 CrossRefGoogle Scholar
  63. Hall AE, Patel PN (1985) Breeding for resistance to drought and heat. In: Singh SR, Rachie KO (eds) Cowpea research, production and utilization. Wiley, New York, pp 137–151Google Scholar
  64. Hall AE, Cisse N, Thiaw S, Elawad SOA, Ehlers JD, Ismail AM, Fery RL, Roberts PA, Kitch LW, Murdock LL, Boukar O, Phillips RD, Mc Watters KH (2003) Development of cowpea cultivars and germplasm by the bean/cowpea CRSP. Field Crops Res 82:103–134Google Scholar
  65. Hampton RO, Thottappilly G (2003) Cowpea. In: Loebenstein G, Thottappilly G (eds) Virus and virus-like diseases of major crops in developing countries. Springer, Dordrecht, pp 355–376Google Scholar
  66. Herniter I, Muñoz Amatriaín M, Lo S, Guo YN, Close TJ (2018) Identification of candidate genes controlling black seed coat and pod tip color in cowpea (Vigna unguiculata L. Walp.). G3 (Bethesda) 8:3347–3355.  https://doi.org/10.1534/g3.118.200521 CrossRefGoogle Scholar
  67. Heuer S, Gaxiola R, Schilling R, Herrera-Estrella L, López-Arredondo D, Wissuwa M, Delhaize E, Rouached H (2017) Improving phosphorus use efficiency: a complex trait with emerging opportunities. Plant J 90:868–885.  https://doi.org/10.1111/tpj.13423 CrossRefPubMedGoogle Scholar
  68. Higgins TJV, Gollasch S, Molvig L, Moore A, Popelka C, Watkins P et al (2010) Genetic transformation of cowpea for protection against bruchids and caterpillars. In: Fifth world cowpea research conference 2010; Sally-SenegalGoogle Scholar
  69. Higgins TJV, Gollasch S, Molvig L, Moore A, Popelka C, Watkins P, Armstrong J, Mahon R, Ehlers J, Huesing J, Margam V, Shade R, Murdock L (2013) Genetic transformation of cowpea for protection against bruchids and caterpillars. In: Boukar O, Coulibaly O, Fatokun CA, Lopez K, Tamo M (eds) Innovative research along the cowpea value chain. International Institute of Tropical Agriculture, Ibadan, pp 133–139Google Scholar
  70. Horn LN, Ghebrehiwot HM, Shimelis HA (2016) Selection of novel cowpea genotypes derived through gamma irradiation. Front Plant Sci 7:262.  https://doi.org/10.3389/fpls.2016.00262 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Huang K, Mellor KE, Paul SN, Lawson MJ, Mackey AJ, Timko MP (2012) Global changes in gene expression during compatible and incompatible interactions of cowpea (Vigna unguiculata L.) with the root parasitic angiosperm Striga gesnerioides. BMC Genomics 13:1–15Google Scholar
  72. Huynh BL, Close TJ, Roberts PA, Hu Z, Wanamaker S, Lucas MR, Fatokun C (2013) Gene pools and the genetic architecture of domesticated cowpea. Plant Genome 6:1–8.  https://doi.org/10.3835/plantgenome2013.03.0005 CrossRefGoogle Scholar
  73. Huynh BL, Ehlers JD, Ndeve A, Wanamaker S, Lucas MR, Close TJ, Roberts PA (2015) Genetic mapping and legume synteny of aphid resistance in African cowpea (Vigna unguiculata L. Walp.) grown in California. Mol Breed 35:36.  https://doi.org/10.1007/s11032-015-0254-0 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Huynh BL, Matthews WC, Ehlers JD, Lucas MR, Santos JR, Ndeve A, Roberts PA (2016) A major QTL corresponding to the Rk locus for resistance to root-knot nematodes in cowpea (Vigna unguiculata L. Walp.). Theor Appl Genet 129:87–95PubMedGoogle Scholar
  75. Huynh BL, Ehlers JD, Munoz-Amatriain M, Lonardi S, Santos JR, Ndeve A et al (2017) A multi-parent advanced generation inter-cross population for genetic analysis of multiple traits in cowpea (Vigna unguiculata L. Walp.). bioRxiv.  https://doi.org/10.1101/149476 CrossRefGoogle Scholar
  76. Huynh BL, Ehlers JD, Huang BE, Muñoz Amatriaín M, Lonardi S, Santos JR, Drabo I (2018) A multi parent advanced generation inter cross (MAGIC) population for genetic analysis and improvement of cowpea (Vigna unguiculata L. Walp.). Plant J 93:1129–1142.  https://doi.org/10.1111/tpj.13827 CrossRefPubMedGoogle Scholar
  77. Huynh BL, Ehlers JD, Close TJ, Roberts PA (2019) Registration of cowpea (Vigna unguiculata L. Walp.) multiparent advanced generation intercross (MAGIC) population. J Plant Regist 13:281–286Google Scholar
  78. Ikea J, Ingelbrecht I, Uwaifo A, Thottappilly G (2003) Stable gene transformation in cowpea (Vigna unguiculata L. Walp.) using particle gun method. Afr J Biotechnol 2:211–218Google Scholar
  79. Ilori CO, Pellegrineschi A (2011) Transgene expression in cowpea (Vigna unguiculata (L.) Walp.) through Agrobacterium transformation of pollen in flower buds. Afr J Biotechnol 10:11821–11828Google Scholar
  80. Ishimoto M, Sato T, Chrispeels MJ, Kitamura K (1996) Bruchid resistance of transgenic azuki bean expressing seed α-amylase inhibitor of common bean. Entomol Exp Appl 79:309–315Google Scholar
  81. Ishiyaku MF, Higgins TJ, Umar ML, Misari SM, Mignouna HJ, Nang’Ayo F, Huesing JE (2010) Field evaluation of some transgenic Maruca resistant Bt cowpea for agronomic traits under confinement in Zaria, Nigeria. In: Book of abstracts of 5th world cowpea conference, Dakar, Senegal, pp 36–37Google Scholar
  82. Iuchi S, Yamaguchi-Shinozaki K, Urao T, Shinozaki K (1996a) Characterization of two cDNAs for novel drought-inducible genes in the highly drought-tolerant cowpea. J Plant Res 109:415–424Google Scholar
  83. Iuchi S, Yamaguchi-Shinozaki K, Urao T, Terao T, Shinozaki K (1996b) Novel drought-inducible genes in the highly drought-tolerant cowpea: cloning of cDNAs and analysis of the expression of the corresponding genes. Plant Cell Physiol 37:1073–1082PubMedGoogle Scholar
  84. Iuchi S, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K (2000) A stress-inducible gene for 9-cis-epoxycartenoid dioxygenase involved in abscisic acid biosynthesis under water stress in drought tolerant cowpea. Plant Physiol 123:553–562PubMedPubMedCentralGoogle Scholar
  85. Ivo NL, Nascimento CP, Vieira LS, Campos FA, Aragao FJ (2008) Biolistic-mediated genetic transformation of cowpea (Vigna unguiculata) and stable Mendelian inheritance of transgenes. Plant Cell Rep 27:1475–1483PubMedGoogle Scholar
  86. Jackai LEN, Daoust RA (1986) Insect pests of cowpeas. Ann Rev Entomol 31:95–119Google Scholar
  87. Jayathilake C, Visvanathan R, Deen A, Bangamuwage R, Jayawardana BC, Nammi S, Liyange R (2018) Cowpea: an overview on its nutritional facts and health benefits. J Sci Food Agric 98:4793–4806.  https://doi.org/10.1002/jsfa.9074 CrossRefPubMedGoogle Scholar
  88. Ji J, Zhang C, Sun Z, Wang L, Duanmu D, Fan Q (2019) Genome editing in cowpea Vigna unguiculata using CRISPR-Cas9. Int J Mol Sci 20:2471.  https://doi.org/10.3390/ijms20102471 CrossRefPubMedCentralGoogle Scholar
  89. John P, Sivalingam PN, Haq QMI, Kumar N, Mishra A, Briddon RW, Malathi VG (2008) Cowpea golden mosaic disease in Gujarat is caused by a Mungbean yellow mosaic India virus isolate with a DNA B variant. Arch Virol 153:1359PubMedGoogle Scholar
  90. Karanja J, Nguluu SN, Wambua J, Gatheru M (2013) Response of cowpea genotypes to Alectra vogelii parasitism in Kenya. Afr J Biotechnol 12:6591–6598Google Scholar
  91. Karjee S, Islam MN, Mukherjee SK (2008) Screening and identification of virus-encoded RNA silencing suppressors. In: Barik S (ed) Methods in molecular biology. RNAi: design and application, vol 442. Humana Press, Totowa, pp 187–203.  https://doi.org/10.1007/978-1-59745-191-8_14 CrossRefGoogle Scholar
  92. Kaur N, Murphy JB (2012) Enhanced isoflavone biosynthesis in transgenic cowpea (Vigna unguiculata L.) callus. J Plant Mol Biol Biotechnol 3:1–8Google Scholar
  93. Kausch AP, Nelson-Vasilchik K, Hague J, Mookkan M, Quemada H, Dellaporta S, Fragoso C, Zhang ZJ (2019) Edit at will: genotype independent plant transformation in the era of advanced genomics and genome editing. Plant Sci 281:186–205.  https://doi.org/10.1016/j.plantsci.2019.01.006 CrossRefPubMedGoogle Scholar
  94. Khan ZR, Hassanali A, Overholt W, Khamis TM, Hooper AM, Pickett JA, Woodcock CM (2002) Control of witchweed Striga hermonthica by intercropping with Desmodium spp., and the mechanism defined as allelopathic. J Chem Ecol 28:1871–1885PubMedGoogle Scholar
  95. Kharkwal MC, Shu QY (2009) The role of induced mutations in world food security. In: Shu GY (ed) Induced plant mutations in the genomics era. Food and Agriculture Organization of the United Nations, Rome, pp 33–38Google Scholar
  96. Kulkarni MJ, Prasad TG, Sashidhar VR (2000) Genotypic variation in ‘early warning signals’ from roots in drying soil: intrinsic differences in ABA synthesising capacity rather than root density determines total ABA ‘message’ in cowpea (Vigna unguiculata L.). Ann Appl Biol 136:267–272Google Scholar
  97. Kulothungan S, Ganapathi A, Shajahan A, Kathiravan K (1995) Somatic embryogenesis in cell suspension culture of cowpea (Vigna unguiculata (L.) Walp.). Isr J Plant Sci 43:385–390Google Scholar
  98. Kumar S, Tanti B, Mukherjee SK, Sahoo L (2017a) Molecular characterization and infectivity of Mungbean Yellow Mosaic India virus associated with yellow mosaic disease of cowpea and mungbean. Biocatal Agric Biotechnol.  https://doi.org/10.1016/j.bcab.2017.07.004 CrossRefGoogle Scholar
  99. Kumar S, Tanti B, Patil BL, Mukherjee SK, Sahoo L (2017b) RNAi-derived transgenic resistance to Mungbean yellow mosaic India virus in cowpea. PLoS ONE 12:e0186786PubMedPubMedCentralGoogle Scholar
  100. Li J, Timko MP (2009) Gene-for-gene resistance in Striga–cowpea associations. Science 325:1094–1094PubMedGoogle Scholar
  101. Li G, Wu X, Hu Y, Muñoz-Amatriaín M, Luo J, Zhou W, Wang B, Wang Y, Wu X, Huang L, Lu Z, Xu P (2019) Orphan genes are involved in drought adaptations and ecoclimatic-oriented selections in domesticated cowpea. J Exp Bot.  https://doi.org/10.1093/jxb/erz145/5428130 CrossRefPubMedPubMedCentralGoogle Scholar
  102. Lo S, Muñoz-Amatriaín M, Boukar O, Herniter I, Cisse N, Guo YN, Roberts PA, Xu S, Fatokun C, Close TJ (2018) Identification of QTL controlling domestication related traits in cowpea (Vigna unguiculata L. Walp.). Sci Rep 8:6261.  https://doi.org/10.1038/s41598-018-24349-4 CrossRefPubMedPubMedCentralGoogle Scholar
  103. Lonardi S, Muñoz Amatriaín M, Liang Q, Shu S, Wanamaker SI et al (2019) The genome of cowpea (Vigna unguiculata [L.] Walp.). Plant J 98:767–782.  https://doi.org/10.1111/tpj.14349 CrossRefPubMedGoogle Scholar
  104. Lucas MR, Ehlers JD, Huynh BL, Diop NN, Roberts PA, Close TJ (2013) Markers for breeding heat-tolerant cowpea. Mol Breed 31:529–536Google Scholar
  105. Lucas-Barbosa D, van Loon JJ, Dicke M (2011) The effects of herbivore-induced plant volatiles on interactions between plants and flower-visiting insects. Phytochemistry 72:1647–1654PubMedGoogle Scholar
  106. Lüthi C, Álvarez-Alfageme F, Ehlers JD, Higgins TJ, Romeis J (2013) Resistance of αAI-1 transgenic chickpea (Cicer arietinum) and cowpea (Vigna unguiculata) dry grains to bruchid beetles (Coleoptera: Chrysomelidae). Bull Entomol Res 103:373–381PubMedGoogle Scholar
  107. Machuka J, Damme EV, Peumans WJ, Jackai LEN (1999) Effect of plant lectins on larval development of the legume pod borer, Maruca vitrata. Entomol Exp Appl 93:179–187Google Scholar
  108. Mahalakshmi V, Ng Q, Lawson M, Ortiz R (2007) Cowpea [Vigna unguiculata (L.) Walp.] core collection defined by geographical, agronomical and botanical descriptors. Plant Genet Resour 5:113–119Google Scholar
  109. Manman T, Qian L, Huaqiang T, Yongpeng Z, Jia L, Huanxiu L (2013) A review of regeneration and genetic transformation in cowpea (Vigna unguiculata L. Walp.). Afr J Agric Res 8:1115–1122.  https://doi.org/10.5897/ajar12.2059 CrossRefGoogle Scholar
  110. Márquez-Quiroz C, De-la-Cruz-Lázaro E, Osorio-Osorio R, Sánchez-Chávez E (2015) Biofortification of cowpea beans with iron: iron’s influence on mineral content and yield. J Soil Sci Plant Nutr 15:839–884.  https://doi.org/10.4067/S0718-95162015005000058 CrossRefGoogle Scholar
  111. Matos AR, d’Arcy-Lameta A, França M, Pêtres S, Edelman L, Kader JC, Pham-Thi AT (2001) A novel patatin like gene stimulated by drought stress encodes a galactolipid acyl hydrolase. FEBS Lett 491:188–192PubMedGoogle Scholar
  112. Mellor KE, Hoffman AM, Timko MP (2012) Use of ex vitro composite plants to study the interaction of cowpea (Vigna unguiculata L.) with the root parasitic angiosperm Striga gesnerioides. Plant Methods 8:22.  https://doi.org/10.1186/1746-4811-8-22 CrossRefPubMedPubMedCentralGoogle Scholar
  113. Meng Y, Hou Y, Wang H, Ji R, Liu B, Wen J, Niu L, Lin H (2017) Targeted mutagenesis by CRISPR/Cas9 system in the model legume Medicago truncatula. Plant Cell Rep 36:71–374.  https://doi.org/10.1007/s00299-016-2069-9 CrossRefGoogle Scholar
  114. Meyers G, Thiel HJ (1996) Molecular characterization of pestiviruses. Adv Virus Res 47:53–118PubMedGoogle Scholar
  115. Miesho B, Hailay M, Msiska U, Bruno A, Malinga GM, Ongom PO, Gibson P, Rubaihayo P, Kyamanywa S (2019) Identification of candidate genes associated with resistance to bruchid (Callosobruchus maculatus) in cowpea. Plant Breed.  https://doi.org/10.1111/pbr.12705 CrossRefGoogle Scholar
  116. Mishra S, Behura R, Awasthi JP, Dey M, Sahoo D et al (2014) Ectopic overexpression of a mungbean vacuolar Na+/H+ antiporter gene (VrNHX1) leads to increased salinity stress tolerance in transgenic Vigna unguiculata L. Walp. Mol Breed 34:1345–1359.  https://doi.org/10.1007/s11032-014-0120-5 CrossRefGoogle Scholar
  117. Misra VA, Wang Y, Timko MP (2017) A compendium of transcription factor and transcriptionally active protein coding gene families in cowpea (Vigna unguiculata L.). BMC Genomics 18:898.  https://doi.org/10.1186/s12864-017-4306-1 CrossRefPubMedPubMedCentralGoogle Scholar
  118. Mohammed BS, Ishiyaku MF, Abdullahi US, Katung MD (2014) Response of transgenic Bt cowpea lines and their hybrids under field conditions. J Plant Breed Crop Sci 6:91–96Google Scholar
  119. Mohammed BS, Ishiyaku MF, Abdullahi US, Katung MD (2015) Genetics of Cry 1Ab transgene in transgenic cowpea. Prod Agric Technol 11:108–116Google Scholar
  120. Muchero W, Ehlers JD, Roberts PA (2008) Seedling stage drought-induced phenotypes and drought-responsive genes in diverse cowpea genotypes. Crop Sci 48:541–552Google Scholar
  121. Muchero W, Diop NN, Bhat PR, Fenton RD, Wanamaker S, Pottorff M, Roberts PA (2009) A consensus genetic map of cowpea [Vigna unguiculata (L.) Walp.] and synteny based on EST-derived SNPs. Proc Natl Acad Sci USA 106:18159–18164PubMedGoogle Scholar
  122. Muchero W, Roberts PA, Diop NN, Drabo I, Cisse N, Close TJ, Ehlers JD (2013) Genetic architecture of delayed senescence, biomass, and grain yield under drought stress in cowpea. PLoS ONE 8:e70041.  https://doi.org/10.1371/journal.pone.0070041 CrossRefPubMedPubMedCentralGoogle Scholar
  123. Mundembe R, Matibiri A, Sithole-Niang I (2009) Transgenic plants expressing the coat protein gene of cowpea aphid-borne mosaic potyvirus predominantly convey the delayed symptom development phenotype. Afr J Biotechnol 8:2682–2690Google Scholar
  124. Muñoz Amatriaín M, Mirebrahim H, Xu P, Wanamaker SI, Luo M, Alhakami H, Bozdag S (2017) Genome resources for climate-resilient cowpea, an essential crop for food security. Plant J 89:1042–1054.  https://doi.org/10.1111/tpj.13404 CrossRefPubMedGoogle Scholar
  125. Mushtaq M, Bhat JA, Mir ZA, Sakina A, Ali S et al (2018) CRISPR/Cas approach: a new way of looking at plant–abiotic interactions. J Plant Physiol 224–225:156–162.  https://doi.org/10.1016/j.jplph.2018.04.001 CrossRefPubMedGoogle Scholar
  126. Muthukumar B, Mariamma M, Veluthambi K, Gnanam A (1996) Genetic transformation of cotyledon explants of cowpea (Vigna unguiculata L. Walp.) using Agrobacterium tumefaciens. Plant Cell Rep 15:980–985PubMedGoogle Scholar
  127. Nsa IY, Kareem KT (2015) Additive interactions of unrelated viruses in mixed infections of cowpea (Vigna unguiculata L. Walp.). Front Plant Sci 6:812.  https://doi.org/10.3389/fpls.2015.00812 CrossRefPubMedPubMedCentralGoogle Scholar
  128. Ofuya ZM, Akhidue V (2005) The role of pulses in human nutrition: a review. J Appl Sci Environ Manag 9:99–104Google Scholar
  129. Okeyo-Ikawa R, Amugune NO, Njoroge NC, Asami P, Holton T (2016) In planta seed transformation of Kenyan cowpeas (Vigna unguiculata) with P5CS gene via Agrobacterium tumefaciens. J Agric Biotechnol Sustain Dev 8:32–45Google Scholar
  130. Olasupo FO, Ilori CO, Stanley EA, Owoeye TE, Igwe DO (2018) Genetic analysis of selected mutants of cowpea (Vigna unguiculata [L.] Walp.) using simple sequence repeat and rcbL markers. Am J Plant Sci 9:2728–2756.  https://doi.org/10.4236/ajps.2018.913199 CrossRefGoogle Scholar
  131. Olatoye MO, Hu Z, Aikpokpodion PO (2019) Epistasis detection and modelling for genomic selection in cowpea (Vigna unguiculata L. Walp.). Front Genet 10:677.  https://doi.org/10.3389/fgene.2019.00677 CrossRefPubMedPubMedCentralGoogle Scholar
  132. Omongo S (1998) Insecticide application to reduce pest infestation and damage on cowpea in Uganda. Afr Plant Prot 4:91–100Google Scholar
  133. Osakabe Y, Osakabe K (2017) Genome editing to improve abiotic stress responses in plants. Prog Mol Biol Trans Sci 149:1877.  https://doi.org/10.1016/bs.pmbts.2017.03.007 CrossRefGoogle Scholar
  134. Osipitan OA (2017) Weed interference and control in cowpea production: a review. J Agric Sci 9:11–19.  https://doi.org/10.5539/jas.v9n12p11 CrossRefGoogle Scholar
  135. Paul S, Kundu A, Pal A (2011) Identification and validation of conserved microRNAs along with their differential expression in roots of Vigna unguiculata grown under salt stress. Plant Cell Tissue Organ Cult 105:233–242.  https://doi.org/10.1007/s11240-010-9857-7 CrossRefGoogle Scholar
  136. Penza R, Lurquin PF, Fillipone E (1991) Gene transfer by cocultivation of mature embryos with Agrobacterium tumefaciens: application to cowpea (Vigna unguiculata Walp.). J Plant Physiol 138:39–42Google Scholar
  137. Penza R, Akella V, Lurquin PF (1992) Transient expression and histological localization of a gus chimeric gene after direct transfer to mature cowpea embryos. Biotechniques 13:576–580PubMedGoogle Scholar
  138. Popelka JC, Gollasch S, Moore A, Molvig L, Higgins TJ (2006) Genetic transformation of cowpea (Vigna unguiculata L.) and stable transmission of the transgenes to progeny. Plant Cell Rep 25:304–312PubMedGoogle Scholar
  139. Qin J, Shi A, Mou B, Bhattarai G, Yang W, Weng Y, Motes D (2017) Association mapping of aphid resistance in USDA cowpea (Vigna unguiculata L. Walp.) core collection using SNPs. Euphytica 213:36.  https://doi.org/10.1007/s10681-016-1830-z CrossRefGoogle Scholar
  140. Ramakrishnan K, Gnanam R, Sivakumar P, Manickam A (2005) In vitro somatic embryogenesis from cell-suspension cultures of cowpea [Vigna unguiculata (L.) Walp.]. Plant Cell Rep 24:449–461PubMedGoogle Scholar
  141. Ravelombola WS, Shi A, Weng Y, Clark J, Motes D, Chen P, Srivastava V (2017) Evaluation of salt tolerance at germination stage in cowpea [Vigna unguiculata (L.) Walp.]. Hortic Sci 52:1168–1176Google Scholar
  142. Ravelombola W, Shi A, Weng Y, Mou B, Motes D, Clark J, Yang W (2018) Association analysis of salt tolerance in cowpea (Vigna unguiculata (L.) Walp.) at germination and seedling stages. Theor Appl Genet 131:79–91.  https://doi.org/10.1007/s00122-017-2987-0 CrossRefPubMedGoogle Scholar
  143. Reddy KS, Dhanasekar P (2007) Induced mutations for genetic improvement of mungbean, urdbean and cowpea pulse crops in India. IANCAS Bulletin, pp. 299–307Google Scholar
  144. Reddy PP, Singh DB (1981) Assessment of avoidable yield losses in okra, brinjal, French bean and cowpea due to root-knot nematode. In: III international symposium of plant pathology, New Delhi, pp 93–94Google Scholar
  145. Rubiales D, Fernández-Aparicio M (2012) Innovations in parasitic weeds management in legume crops—a review. Agron Sustain Dev 32:433–449Google Scholar
  146. Sadhukhan A, Panda SK, Sahoo L (2014) The cowpea RING ubiquitin ligase VuDRIP interacts with transcription factor VuDREB2A for regulating abiotic stress responses. Plant Physiol Biochem 83:51–56PubMedGoogle Scholar
  147. Sahoo L, Jaiwal PK (2008) Asiatic beans. In: Kole C, Hall TC (eds) A compendium of transgenic crop plants. Blackwell Publishers, Oxford, pp 115–132Google Scholar
  148. Sahoo L, Sugla T, Singh ND, Nijure P, Sonia, Gulati A, Singh RP, Jaiwal PK (2001) Current status and future strategies in genetic improvement of cowpea. Veg Sci 28:9–16Google Scholar
  149. Sainger M, Jaiwal A, Sainger PA, Chaudhary D, Jaiwal R, Jaiwal PK (2017) Advances in genetic improvement of Camelina sativa for biofuel and industrial bioproducts. Renew Sustain Energy Rev 68:623–637Google Scholar
  150. Saini R, Jaiwal PK (2005) Efficient transformation of a recalcitrant grain legume Vigna mungo L. Hepper via Agrobacterium-mediated gene transfer into shoot apical meristem cultures. Plant Cell Rep 24:164–171PubMedGoogle Scholar
  151. Salinas-Gamboa R, Johnson SD, Sánchez-León N, Koltunow AM, Vielle-Calzada JP (2016) New observations on gametogenic development and reproductive experimental tools to support seed yield improvement in cowpea [Vigna unguiculata (L.) Walp.]. Plant Reprod 29:165–177.  https://doi.org/10.1007/s00497-015-0273-3 CrossRefPubMedPubMedCentralGoogle Scholar
  152. Santos JRP, Ndeve AD, Huynh BL, Matthews WC, Roberts PA (2018) QTL mapping and transcriptome analysis of cowpea reveals candidate genes for root-knot nematode resistance. PLoS ONE 13:e0189185.  https://doi.org/10.1371/journal.pone.0189185 CrossRefPubMedPubMedCentralGoogle Scholar
  153. Sarmah BK, Moore A, Tate W, Molvig L, Morton RL, Rees DP, Higgins TJV (2004) Transgenic chickpea seeds expressing high levels of a bean α-amylase inhibitor. Mol Breed 14:73–82Google Scholar
  154. Sebetha ET, Modi AT, Owoeye LG (2014) Cowpea crude protein as affected by cropping system, site and nitrogen fertilization. J Agric Sci 7:224Google Scholar
  155. Shi J, Gao H, Wang H, Lafitte HR, Archibald RL, Yang M, Hakimi SM, Mo H, Habben JE (2017) ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol J 15:207–216.  https://doi.org/10.1111/pbi.12603 CrossRefPubMedGoogle Scholar
  156. Shivaprasad PV, Thillaichidambaram P, Balaji V, Veluthambi K (2006) Expression of full-length and truncated rep genes from Mungbean yellow mosaic virus-Vigna inhibits viral replication in transgenic tobacco. Virus Genes 33:365–374PubMedGoogle Scholar
  157. Shui XR, Chen ZW, Li JX (2013) MicroRNA prediction and its function in regulating drought-related genes in cowpea. Plant Sci 210:25–35.  https://doi.org/10.1016/j.plantsci.2013.05.002 CrossRefPubMedGoogle Scholar
  158. Simoes-Araujo JL, Alves-Ferreira M, Rumjanek NG, Margis-Pinheiro M (2008) VuNIP1 (NOD26-like) and VuHSP17.7 gene expressions are regulated in response to heat stress in cowpea nodule. Environ Exp Bot 63:256–265Google Scholar
  159. Singh BB (2005) Cowpea (Vigna unguiculata (L.) Walp.). In: Singh RJ (ed) Genetic resources, chromosome engineering and crop improvement. CRC Press, Boca Raton, pp 117–162Google Scholar
  160. Singh BB (2014a) Cowpea: the food legume of the 21st century. Crop Science Society of America, Inc., MadisonGoogle Scholar
  161. Singh BB (2014b) Iron cowpea. In: HarvestPlus. Progress brief #11, pp 21–22Google Scholar
  162. Singh J, Basu PS (2012) Non-nutritive bioactive compounds in pulses and their impact on human health: an overview. Food Nutr Sci 3:1664–1672Google Scholar
  163. Singh BB, Matsui T (2002) Cowpea varieties for drought tolerance. In: Tarawali SA, Singh BB, Fatokun CA (eds) Challenges and opportunities for enhancing sustainable cowpea production. IITA, Ibadan, pp 287–300Google Scholar
  164. Singh DP, Sharma SP, Lal M, Ranwah BR, Sharma V (2013) Induction of genetic variability for polygentraits through physical and chemical mutagens in cowpea (Vigna unguiculata). Legume Res 36:10–14Google Scholar
  165. Singh BB, Timko MP, Aragao FJ (2014) Advances in cowpea improvement and genomics. In: Gupta S, Nadarajan N, Gupta DS (eds) Legumes in the omic era. Springer Nature, Basel, pp 131–153Google Scholar
  166. Slabbert R, Spreeth M, Kruger GHJ (2004) Drought tolerance, traditional crops and biotechnology: breeding towards sustainable development. S Afr J Bot 70:116–123Google Scholar
  167. Solleti SK, Bakshi S, Sahoo L (2008a) Additional virulence genes in conjunction with efficient selection scheme and compatible culture regime enhance recovery of stable transgenic plants in cowpea via Agrobacterium tumefaciens-mediated transformation. J Biotechnol 135:97–104.  https://doi.org/10.1016/j.jbiotec.2008.02.008 CrossRefPubMedGoogle Scholar
  168. Solleti SK, Bakshi S, Purkayastha J, Panda SK, Sahoo L (2008b) Transgenic cowpea (Vigna unguiculata) seeds expressing a bean α-amylase inhibitor 1 confer resistance to storage pests, bruchid beetles. Plant Cell Rep 27:1841–1850.  https://doi.org/10.1007/s00299-008-0606-x CrossRefPubMedGoogle Scholar
  169. Sonia, Saini R, Singh RP, Jaiwal PK (2007) Agrobacterium tumefaciens-mediated transfer of Phaseolus vulgaris α-amylase inhibitor-1 gene into mungbean (Vigna radiata L. Wilczek) using bar as selectable marker. Plant Cell Rep 26:187–198.  https://doi.org/10.1007/s00299-006-0224-4 CrossRefPubMedGoogle Scholar
  170. Souleymane A, Aken’Ova ME, Fatokun CA, Alabi OY (2013) Screening for resistance to cowpea aphid (Aphis craccivora Koch) in wild and cultivated cowpea (Vigna unguiculata L. Walp.) accessions. Int J Sci Environ Technol 2:611–621Google Scholar
  171. Souza PF, Silva FD, Carvalho FE, Silveira JA, Vasconcelos IM, Oliveira JT (2017) Photosynthetic and biochemical mechanisms of an EMS-mutagenized cowpea associated with its resistance to cowpea severe mosaic virus. Plant Cell Rep 36:219–234.  https://doi.org/10.1007/s00299-016-2074-z CrossRefPubMedGoogle Scholar
  172. Spriggs A, Henderson ST, Hand ML, Johnson SD, Taylor JM, Koltunow A (2018) Assembled genomic and tissue-specific transcriptomic data resources for two genetically distinct lines of cowpea (Vigna unguiculata (L.) Walp.). Gates Open Res 2:7.  https://doi.org/10.12688/gatesopenres.12777.1 CrossRefPubMedPubMedCentralGoogle Scholar
  173. Sun X, Hu Z, Chen R, Jiang Q, Song G, Zhang H, Xi Y (2015) Targeted mutagenesis in soybean using the CRISPR-Cas9 system. Sci Rep 5:10342.  https://doi.org/10.1038/srep10342 CrossRefPubMedPubMedCentralGoogle Scholar
  174. Taiwo MA (2003) Viruses infecting legumes in Nigeria: case history. In: Hughes JA, Odu BO (eds) Plant virology in Sub-Saharan Africa. International Institute of Tropical Agriculture, Ibadan, pp 365–380Google Scholar
  175. Timko MP, Singh BB (2008) Cowpea, a multifunctional legume. In: Moore PH, Ming R (eds) Genomics of tropical crop plants. Plant genetics and genomics: crops and models, vol 1. Springer, New York, pp 227–258Google Scholar
  176. Timko MP, Ehlers JD, Roberts PA (2007) Cowpea. In: Pulses, sugar and tuber crops, vol 3. Springer, Berlin, pp 49–67Google Scholar
  177. Timko MP, Rushton PJ, Laudeman TW, Bokowiec MT, Chipumuro E, Cheung F et al (2008) Sequencing and analysis of the gene-rich space of cowpea. BMC Gen 9:103.  https://doi.org/10.1186/1471-2164-9-103 CrossRefGoogle Scholar
  178. Togola A, Boukar O, Belko N, Chamarthi SK, Fatokun C, Tamo M, Oigiangbe N (2017) Host plant resistance to insect pests of cowpea (Vigna unguiculata L. Walp.): achievements and future prospects. Euphytica 213:239.  https://doi.org/10.1007/s10681-017-2030-1 CrossRefGoogle Scholar
  179. Ufaz S, Galili G (2008) Improving the content of essential amino acids in crop plants: goals and opportunities. Plant Physiol 147:954–961PubMedPubMedCentralGoogle Scholar
  180. Varma A, Reddy DR (1984) Golden and green mosaics—two new diseases of cowpea in Northern India. Indian Phytopathol 37:409Google Scholar
  181. Wang L, Wang L, Tan Q, Fan Q, Zhu H, Hong Z, Zhang Z, Duanmu D (2016) Efficient inactivation of symbiotic nitrogen fixation related genes in Lotus japonicus using CRISPR-Cas9. Front Plant Sci 7:1333.  https://doi.org/10.3389/fpls.2016.01333 CrossRefPubMedPubMedCentralGoogle Scholar
  182. Wang C, Liu Q, Shen Y, Hua Y, Wang J, Lin J, Wu M, Sun T, Cheng Z, Mercier R, Wang K (2019) Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes. Nat Biotechnol 37:283–286.  https://doi.org/10.1038/s41587-018-0003-0 CrossRefPubMedGoogle Scholar
  183. Win KT, Oo AZ (2015) Genotypic difference in salinity tolerance during early vegetative growth of cowpea (Vigna unguiculata L. Walp.) from Myanmar. Biocatal Agric Biotechnol 4:449–455Google Scholar
  184. Worrall EA, Bravo-Cazar A, Nilon AT, Fletcher SJ, Robinson KE, Carr JP, Mitter N (2019) Exogenous application of RNAi-inducing double stranded RNA inhibits aphid-mediated transmission of a plant virus. Front Plant Sci 10:265.  https://doi.org/10.3389/fpls.2019.00265 CrossRefPubMedPubMedCentralGoogle Scholar
  185. Yadav T, Nisha KC, Chopra NK, Yadav MR, Kumar R, Rathore DK, Ram H (2017) Weed management in cowpea—a review. Int J Curr Microbiol Appl Sci 6:1373–1385Google Scholar
  186. Yao S, Jiang C, Huang Z, Torres-Jerez I, Chang J, Zhang H, Udvardi M, Liu R, Verdier J (2016) The Vigna unguiculata gene expression atlas (VuGEA) from de novo assembly and quantification of RNA-seq data provides insights into seed maturation mechanisms. Plant J 88:318–327.  https://doi.org/10.1111/tpj.13279 CrossRefPubMedGoogle Scholar
  187. Yoneyama K (2016) Small-molecule inhibitors: weed-control measures. Nat Chem Biol 12:658PubMedGoogle Scholar
  188. Yoneyama K, Xie X, Yoneyama K, Takeuchi Y (2009) Strigolactones: structures and biological activities. Pest Manag Sci 65:467–470PubMedGoogle Scholar
  189. Yu X, Wang G, Huang S, Ma Y, Xia L (2014) Engineering plants for aphid resistance: current status and future perspectives. Appl Genet 127:2065–2083Google Scholar
  190. Zhu J, Kaeppler SM, Lynch JP (2005) Topsoil foraging and phosphorus acquisition efficiency in maize (Zea mays). Funct Plant Biol 32:749–762Google Scholar
  191. Züst T, Agrawal AA (2016) Mechanisms and evolution of plant resistance to aphids. Nat Plants 2:15206.  https://doi.org/10.1038/nplants.2015.206 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Centre for BiotechnologyM. D. UniversityRohtakIndia
  2. 2.Department of ZoologyM. D. UniversityRohtakIndia

Personalised recommendations