Recurrent somatic embryogenesis and development of somatic embryos in Akebia trifoliata (Thunb.) Koidz (Lardizabalaceae)

  • Shuaiyu Zou
  • Xiaohong Yao
  • Caihong Zhong
  • Dawei Li
  • Zupeng Wang
  • Hongwen HuangEmail author
Original Article


A simple and effective protocol was established for recurrent somatic embryogenesis and plant regeneration in Akebia trifoliata (Thunb.) Koidz. Somatic embryos directly formed from the root zone of the immature zygotic embryos cultured on MS medium devoid of plant growth regulator (PGR). The induction frequency of immature zygotic embryos was 52.5%, and the mean number of somatic embryos reached up to 19.5. Secondary somatic embryos arose on the primary embryos at a high frequency (95.8%), and this process maintained in a recurrent way on PGR-free MS medium. The highest mean number of somatic embryos also appeared in the primary embryos which can reach up to 44.7. While both of the embryogenic potential and mean number of embryos per explant displayed a gradual diminution with subculturing. The addition of 0.5 mg l−1 6-benzyladenine in the 1/2 MS regeneration medium can significantly improve the frequency of somatic embryos convert to plantlets. The microscopic analysis revealed that the development process of somatic embryos via the globular, heart, torpedo and cotyledonal stages in A. trifoliata, the histological analysis showed that somatic embryos directly initiated from root epidermal cells and there are no vascular connections between the somatic embryos and maternal tissue. Regenerated plantlets acclimated successfully to greenhouse conditions. Approximately 65% plantlets survived and displayed no morphological characteristics differences with seed-derived plants. The simple and effective protocols established in this study will promote large-scale clonal propagation and genetic improvement of A. trifoliata.

Key message

Somatic embryogenesis has never been reported in Akebia trifoliata (Thunb.) Koidz. The study showed the origin and development process of somatic embryos in Akebia trifoliata (Thunb.) Koidz.


Akebia trifoliata Somatic embryogenesis Somatic embryos Development Hormone-free medium 



This work was supported by the Plant Germplasm Innovation Program, Science and Technology Service Network Initiative, Chinese Academy of Sciences (ZSZC-007).

Author contributions

HH conceived and designed the experiments, SZ carried out the study and wrote a draft, HH and XY revised the manuscript, CZ, DL, ZW contributed to the writing of the manuscript. All authors read and approved the manuscript final version.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. Abohatem MA, Bakil Y, Baaziz M (2017) Plant regeneration from somatic embryogenic suspension cultures of date palm. Date Palm Biotechnol Protoc 1637:203–214Google Scholar
  2. Andrade GM, Merkle SA (2005) Enhancement of American chestnut somatic seedling production. Plant Cell Rep 24:326–334PubMedCrossRefPubMedCentralGoogle Scholar
  3. Arnold SV, Sabala I, Bozhkov P, Dyachok J, Filonova L (2002) Developmental pathways of somatic embryogenesis. Plant Cell, Tissue Organ Cult 69:233–249CrossRefGoogle Scholar
  4. Barra-Jimenez A, Aronen TS, Alegre J, Toribio M (2015) Cryopreservation of embryogenic tissues from mature holm oak trees. Cryobiology 70:217–225PubMedCrossRefPubMedCentralGoogle Scholar
  5. Bonga JM (2016) Can explant choice help resolve recalcitrance problems in in vitro propagation, a problem still acute especially for adult conifers? Trees 31:781–789CrossRefGoogle Scholar
  6. Bonga JM, Klimaszewska KK, von Aderkas P (2009) Recalcitrance in clonal propagation, in particular of conifers. Plant Cell, Tissue Organ Cult 100:241–254CrossRefGoogle Scholar
  7. Burbulis N, Kupriene R (2005) Induction of somatic embryos on in vitro cultured zygotic embryos of spring Brassica napus. Acta Univ Latviensis 691:137–143Google Scholar
  8. Corredoira E, Vieitez AM, Ballester A (2002) Somatic embryogenesis in elm. Ann Bot 89:637–644PubMedPubMedCentralCrossRefGoogle Scholar
  9. Corredoira E, Valladares S, Martínez MT, Vieitez AM, San José MC (2013) Somatic embryogenesis in Alnus glutinosa (L.) Gaertn. Trees 27:1597–1608CrossRefGoogle Scholar
  10. Corredoira E, Ballester A, Ibarra M, Vieitez AM (2015) Induction of somatic embryogenesis in explants of shoot cultures established from adult Eucalyptus globulus and E. saligna x E. maidenii trees. Tree Physiol 35:678–690PubMedCrossRefGoogle Scholar
  11. Corredoira E, Martínez M, Cernadas M, San José M (2017) Application of biotechnology in the conservation of the genus Castanea. Forests 8:394CrossRefGoogle Scholar
  12. Corredoira E, Merkle SA, Martínez MT, Toribio M, Canhoto JM, Correia SI, Ballester A, Vieitez AM (2019) Non-zygotic embryogenesis in hardwood species. Criti Rev Plant Sci 38:29–97CrossRefGoogle Scholar
  13. Dobrowolska I, Andrade GM, Clapham D, Egertsdotter U (2017) Histological analysis reveals the formation of shoots rather than embryos in regenerating cultures of Eucalyptus globulus. Plant Cell, Tissue Organ Cult 128:319–326CrossRefGoogle Scholar
  14. Elhiti M, Stasolla C, Wang A (2013) Molecular regulation of plant somatic embryogenesis. Vitro Cell Dev Biol Plant 49:631–642CrossRefGoogle Scholar
  15. Feher A (2015) Somatic embryogenesis—stress-induced remodeling of plant cell fate. Biochim Biophys Acta 1849:385–402PubMedCrossRefGoogle Scholar
  16. Fehér A, Pasternak TP, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell, Tissue Organ Cult 74:201–228CrossRefGoogle Scholar
  17. Fernando JA, Melo M, Soares MKM, Appezzato-da-Gloria B (2001) Anatomy of somatic embryogenesis in Carica papaya L. Braz Arch Biol Technol 44:247–255CrossRefGoogle Scholar
  18. Filonova L, Bozhkov P, von Arnold S (2000) Developmental pathway of somatic embryogenesis in Picea abies as revealed by time-lapse tracking. J Exp Bot 51:249–264PubMedCrossRefGoogle Scholar
  19. Gaj M (2001) Direct somatic embryogenesis as a rapid and efficient system for in vitro regeneration of Arabidopsis thaliana. Plant Cell, Tissue Organ Cult 64:39–46CrossRefGoogle Scholar
  20. Gaj M (2004) Factors influencing somatic embryogenesis induction and plant regeneration with particular reference to Arabidopsis thaliana (L.) Heynh. Plant Growth Regul 43:27–47CrossRefGoogle Scholar
  21. Germana MA, Lambardi M (2016) In vitro embryogenesis in higher plants. Springer, New YorkCrossRefGoogle Scholar
  22. Gleddie S, Keller W, Setterfield G (1983) Somatic embryogenesis and plant regeneration from leaf explants and cell suspensions of Solanum melongena (eggplant). Can J Bot 61:656–666CrossRefGoogle Scholar
  23. Gray DJ (1989) Effects of dehydration and exogenous growth regulators on dormancy, quiescence and germination of grape somatic embryos. In Vitro Cell Dev Biol 25:1173–1178CrossRefGoogle Scholar
  24. Grzybkowska D, Morończyk J, Wójcikowska B, Gaj MD (2018) Azacitidine (5-AzaC)-treatment and mutations in DNA methylase genes affect embryogenic response and expression of the genes that are involved in somatic embryogenesis in Arabidopsis. Plant Growth Regul 85:243–256CrossRefGoogle Scholar
  25. Guan Y, Li SG, Fan XF, Su ZH (2016) Application of somatic embryogenesis in woody plants. Front Plant Sci 7:938PubMedPubMedCentralGoogle Scholar
  26. Halperin W (1995) In vitro embryogenesis: some historical issues and unresolved problems. In: Thorpe TA (ed) In vitro embryogenesis in plants. Springer, Dordrecht, pp 1–16Google Scholar
  27. Karami O, Aghavaisi B, Mahmoudi Pour A (2009) Molecular aspects of somatic-to-embryogenic transition in plants. J Chem Biol 2:177–190PubMedPubMedCentralCrossRefGoogle Scholar
  28. Klimaszewska K, Overton C, Stewart D, Rutledge RG (2011) Initiation of somatic embryos and regeneration of plants from primordial shoots of 10-year-old somatic white spruce and expression profiles of 11 genes followed during the tissue culture process. Planta 233:635–647PubMedCrossRefPubMedCentralGoogle Scholar
  29. Koh WL, Loh CS (2000) Direct somatic embryogenesis, plant regeneration and in vitro flowering in rapid-cycling Brassica napus. Plant Cell Rep 19:1177–1183PubMedCrossRefPubMedCentralGoogle Scholar
  30. Li L, Yao XH, Zhong CH, Chen XZ, Huang HW (2010) Akebia: a potential new fruit crop in China. HortScience 45:4–10CrossRefGoogle Scholar
  31. Liu LP, Qian ZX (2002) Determination of nutritional components in fruit of Akebia trifoliate Koidz. J Southeast Guizhou Natl Teach Coll 20:39–41Google Scholar
  32. Lu D, Wei W, Zhou W, McGuigan LD, Ji F-y, Li X, Xing Y, Zhang Q, Fang K-f, Cao Q-q, Qin L (2017) Establishment of a somatic embryo regeneration system and expression analysis of somatic embryogenesis-related genes in Chinese chestnut (Castanea mollissima Blume). Plant Cell, Tissue Organ Cult 130:601–616CrossRefGoogle Scholar
  33. Márquez-López RE, Pérez-Hernández C, Kú-González A, Galaz-Ávalos RM, Loyola-Vargas VM (2018) Localization and transport of indole-3-acetic acid during somatic embryogenesis in Coffea canephora. Protoplasma 255:695–708PubMedCrossRefPubMedCentralGoogle Scholar
  34. Maximova SN, Young A, Pishak S, Miller C, Traore A, Guiltinan MJ (2005) Integrated system for propagation of Theobroma cacao L. In: Jain SM, Gupta PK (eds) Protocol for somatic embryogenesis in woody plants. Springer, Dordrecht, pp 209–227CrossRefGoogle Scholar
  35. Merkle SA (1995) Strategies for dealing with limitations of somatic embryogenesis in hardwood trees. Plant Tissue Cult Biotechnol 1:112–121Google Scholar
  36. Merkle SA, Dean JFD (2000) Forest tree biotechnology. Curr Opin Biotechnol 11:298–302PubMedCrossRefPubMedCentralGoogle Scholar
  37. Merkle SA, Montello PM, Reece HM, Kong L (2014) Somatic embryogenesis and cryostorage of eastern hemlock and Carolina hemlock for conservation and restoration. Trees 28:1767–1776CrossRefGoogle Scholar
  38. Mikula A, Pozoga M, Tomiczak K, Rybczynski JJ (2015) Somatic embryogenesis in ferns: a new experimental system. Plant Cell Rep 34:783–794PubMedPubMedCentralCrossRefGoogle Scholar
  39. Motoike SY, Skirvin RM, Norton MA, Otterbacher AG (2001) Somatic embryogenesis and long term maintenance of embryogenic lines from fox grapes. Plant Cell, Tissue Organ Cult 66:121–131CrossRefGoogle Scholar
  40. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:495–497CrossRefGoogle Scholar
  41. Normah M, Rohani E, Mohamed-Hussein Z (2013) Somatic embryogenesis in higher plants. Malays Appl Biol 42:1–12Google Scholar
  42. Norusis MJ (1998) SPSS/PC advanced statistics. SPSS Inc, ChicagoGoogle Scholar
  43. Park YS, Lelu-Walter MA, Harvengt L, Trontin JF, MacEacheron I, Klimaszewska K, Bonga JM (2006) Initiation of somatic embryogenesis in Pinus banksiana, P. strobus, P. pinaster, and P. sylvestris at three laboratories in Canada and France. Plant Cell, Tissue Organ Cult 86:87–101CrossRefGoogle Scholar
  44. Pavlović S, Vinterhalter B, Zdravković-Korać S, Vinterhalter D, Zdravković J, Cvikić D, Mitić N (2012) Recurrent somatic embryogenesis and plant regeneration from immature zygotic embryos of cabbage (Brassica oleracea var. capitata) and cauliflower (Brassica oleracea var. botrytis). Plant Cell, Tissue Organ Cult 113:397–406CrossRefGoogle Scholar
  45. Peeris MKP, Senarath W (2015) In vitro propagation of Santalum album L. J Natl Sci Found Sri Lanka 43:265CrossRefGoogle Scholar
  46. Pinto G, Park Y-S, Silva S, Neves L, Araujo C, Santos C (2008) Factors affecting maintenance, proliferation, and germination of secondary somatic embryos of Eucalyptus globulus Labill. Plant Cell, Tissue Organ Cult 95:69–78CrossRefGoogle Scholar
  47. Quinga LAP, Heringer AS, Fraga HPDF, Vieira L, Silveira V, Steinmacher D, Guerra M (2018) Insights into the conversion potential of Theobroma cacao L. somatic embryos using quantitative proteomic analysis. Sci Horticult 229:65–76CrossRefGoogle Scholar
  48. Rai MK, Asthana P, Singh SK, Jaiswal VS, Jaiswal U (2009) The encapsulation technology in fruit plants—a review. Biotechnol Adv 27:671–679PubMedCrossRefPubMedCentralGoogle Scholar
  49. Rocha DI, Vieira LM, Tanaka FAO, da Silva LC, Otoni WC (2012) Somatic embryogenesis of a wild passion fruit species Passiflora cincinnata masters: histocytological and histochemical evidences. Protoplasma 249:747–758PubMedCrossRefPubMedCentralGoogle Scholar
  50. Rugh CL, Senecoff JF, Meagher RB, Merkle SA (1998) Development of transgenic yellow poplar for mercury phytoremediation. Nat Biotechnol 16:925–928PubMedCrossRefPubMedCentralGoogle Scholar
  51. Shekhawat GS, Mathur S, Batra A (2009) Role of phytohormones and nitrogen in somatic embryogenesis induction in cell culture derived from leaflets of Azadirachta indica. Biol Plant 53:707–710CrossRefGoogle Scholar
  52. Shen GL, Shao AJ, Huang LQ, Lin SF (2007) Studies on callus culture of Akebia trifoliata. China J Chin Mater Media 32:899–901Google Scholar
  53. Shivani Awasthi P, Sharma V, Kaur N, Kaur N, Pandey P, Tiwari S (2017) Genome-wide analysis of transcription factors during somatic embryogenesis in banana (Musa spp.) cv. Grand Naine. PLoS ONE 12:e0182242PubMedPubMedCentralCrossRefGoogle Scholar
  54. Shohael AM, Murthy HN, Paek KY (2014) Pilot-scale culture of somatic embryos of Eleutherococcus senticosus in airlift bioreactors for the production of eleutherosides. Biotechnol Lett 36:1727–1733PubMedCrossRefGoogle Scholar
  55. Singh R, Rai MK, Kumari N (2015) Somatic embryogenesis and plant regeneration in Sapindus mukorossi Gaertn. from leaf-derived callus induced with 6-benzylaminopurine. Appl Biochem Biotechnol 177:498–510PubMedCrossRefGoogle Scholar
  56. Smith DL, Krikorian AD (1989) Release of somatic embryogenic potential from excised zygotic embryos of carrot and maintenance of proembryonic cultures in hormone-free medium. Am J Bot 76:1832–1843PubMedCrossRefGoogle Scholar
  57. Steward FC, Mapes MO, Smith J (1958) Growth and organized development of cultured cells. I. Growth and division of freely suspended cells. Am J Bot 45:693–703CrossRefGoogle Scholar
  58. Tautorus T, Fowke L, Dunstan D (1991) Somatic embryogenesis in conifers. Can J Bot 69:1873–1899CrossRefGoogle Scholar
  59. Vengadesan G, Pijut PM (2009) Somatic embryogenesis and plant regeneration of northern red oak (Quercus rubra L.). Plant Cell, Tissue Organ Cult 97:141–149CrossRefGoogle Scholar
  60. Vidal N, Mallon R, Valladares S, Meijomin AM, Vieitez AM (2010) Regeneration of transgenic plants by Agrobacterium-mediated transformation of somatic embryos of juvenile and mature Quercus robur. Plant Cell Rep 29:1411–1422PubMedCrossRefGoogle Scholar
  61. Vieitez AM (1995) Somatic embryogenesis in Camellia spp. In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants: volume 2—angiosperms, vol 2. Springer, Dordrecht, pp 235–276CrossRefGoogle Scholar
  62. Vogel G (2005) How does a single somatic cell become a whole plant. Science 309:86PubMedCrossRefPubMedCentralGoogle Scholar
  63. Wang DZ, Li F, Yan J, Zhong HM (2004) Study and application of nutritional components of wild plant Var australis (Diels) Rehd. Amino Acids Biot Resour 26:16–17Google Scholar
  64. Williams EG, Maheswaran G (1986) Somatic embryogenesis: factors influencing coordinated behaviour of cells as an embryogenic group. Ann Bot 57:443–462CrossRefGoogle Scholar
  65. Winkelmann T (2016) Somatic versus zygotic embryogenesis: Learning from seeds. In: Germanà MA, Lambardi M (eds) In vitro embryogenesis in higher plants. Humana Press, New York, pp 25–46CrossRefGoogle Scholar
  66. Wu LL, Ke BF, Gong C, Ma XL, Li JA (2015) Tissue culture and rapid propagation of Akebia trifoliate var. australis. Plant Physiol J 51:903–908Google Scholar
  67. Yang X, Zhang X (2010) Regulation of somatic embryogenesis in higher plants. Crit Rev Plant Sci 29:36–57CrossRefGoogle Scholar
  68. Yang JL, Seong ES, Kim MJ, Ghimire BK, Kang WH, Yu CY, Li CH (2009) Direct somatic embryogenesis from pericycle cells of broccoli (Brassica oleracea L. var. italica) root explants. Plant Cell, Tissue Organ Cult 100:49–58CrossRefGoogle Scholar
  69. Yeung EC (1995) Structural and developmental patterns in somatic embryogenesis. In: Thorpe TA (ed) In vitro embryogenesis in plants. Current plant science and biotechnology in agriculture, vol 20. Springer, DordrechtGoogle Scholar
  70. Zdravković-Korać S, Milojević J, Tubić L, Ćalić-Dragosavac D, Mitić N, Vinterhalter B (2010) Somatic embryogenesis and plant regeneration from root sections of Allium schoenoprasum L. Plant Cell, Tissue Organ Cult 101:237–244CrossRefGoogle Scholar
  71. Zegzouti R, Arnould MF, Favre JM (2001) Histological investigation of the multiplication step in secondary somatic embryogenesis of Quercus robur L. Ann For Sci 58:681–690CrossRefGoogle Scholar
  72. Zou S, Yao X, Zhong C, Zhao T, Huang H (2018) Genetic analysis of fruit traits and selection of superior clonal lines in Akebia trifoliate (Lardizabalaceae). Euphytica 214:111CrossRefGoogle Scholar
  73. Zou SY, Yao XH, Zhong CH, Zhao TT, Huang HW (2019) Effectiveness of recurrent selection in Akebia trifoliata (Lardizabalaceae) breeding. Sci Hortic 246:79–85CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Shuaiyu Zou
    • 1
    • 2
    • 3
  • Xiaohong Yao
    • 4
  • Caihong Zhong
    • 4
  • Dawei Li
    • 4
  • Zupeng Wang
    • 4
  • Hongwen Huang
    • 1
    • 2
    Email author
  1. 1.Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical GardenThe Chinese Academy of SciencesGuangzhouChina
  2. 2.Guangdong Provincial Key Laboratory of Applied BotanyGuangzhouChina
  3. 3.College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
  4. 4.Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical GardenThe Chinese Academy of SciencesWuhanChina

Personalised recommendations