Advertisement

Plant Cell, Tissue and Organ Culture (PCTOC)

, Volume 139, Issue 1, pp 119–129 | Cite as

Callus from Pyrostegia venusta (Ker Gawl.) Miers: a source of phenylethanoid glycosides with vasorelaxant activities

  • Antonio Reyes-Martínez
  • Juan Roberto Valle-Aguilera
  • Marilena Antunes-Ricardo
  • Janet Gutiérrez-Uribe
  • Carmen Gonzalez
  • María del Socorro Santos-DíazEmail author
Original Article
  • 93 Downloads

Abstract

Pyrostegia venusta (Ker Gawl.) Miers is a plant used for the treatment of respiratory diseases, diarrhea, vitiligo, jaundice and to attenuate vomiting. However, the levels of the active principles exhibit great variation because of the type of soil, tissue, age and environmental conditions. An alternative to obtain a constant production of secondary metabolites is the plant tissue culture technology. In this work, callus from Pyrostegia venusta were exposed to 12.5 g L−1 polyethylene glycol, 50 g L−1 sucrose, or were irradiated with UV light to enhance the content of phenolic acids, flavonoids, and antioxidant activity. The biomass was doubled in the control and callus treated with PEG (240 mg dry weight, DW), and triplicated in the medium with 50 g L−1 sucrose (310 mg DW) in relation to the inoculum at day 21. The highest levels of phenolic acids and flavonoids were obtained in irradiated callus. Phenylethanoid glycosides, as verbascoside, isoverbascoside and leucosceptoside A were identified. The metabolites present in callus presented vasorelaxant activity (65 to 100%). The vasodilation was inhibited between 80 and 90%, in the presence of NG-nitro-l-arginine methyl ester, indomethacin or tetraethylammonium chloride but was not affected by atropine. Data suggest that vasorelaxation was mediated by nitric oxide, derivatives of arachidonic acid, and efflux potassium channels, and independent of muscarinic receptors. This is the first report that identified the metabolites present in P. venusta compact callus and described its vasorelaxant properties.

Key message

It was possible to enhance the metabolites production in Pyrostegia venusta callus. The compounds identified corresponded mainly to phenylethanoid glucosides, which exhibited important vasorelaxant activity in isolated rat aorta rings.

Keywords

Callus Isoverbascoside Phenylethanoid glycosides Pyrostegia venusta Verbascoside 

Notes

Acknowledgements

We are grateful to CONACYT for the scholarship (no. 401860) to Reyes-Martínez A; grants C18-PFCE-08-01.01) and (C18-FAI-05-28.28). Thanks to Dr. Ricardo Espinosa-Tanguma for the technical support.

Author contributions

ARM realized the experimental work, participated on elaboration of tables and figures and manuscript. MAR and JGU were responsible of the experiments to identify and characterize the metabolites by HPLC and mass spectrometry, and participates in manuscript revision. JRVA and CG participates in the design of vasorelaxation experiments and discussion of results. MSSD is the leader of the group, designed the project and experimental work, participates in revision, discussion of results and wrote the paper.

Compliance with ethical standards

Conflict of interest

We declare that there is no conflict of interests.

Supplementary material

11240_2019_1669_MOESM1_ESM.docx (294 kb)
Supplementary material 1 (DOCX 294 kb)

References

  1. Alipieva K, Korkina L, Orhan KE, Georgiev MI (2014) Verbascoside—a review of its occurrence, biosynthesis and pharmacological significance. Biotechnol Adv 32:1065–1076CrossRefGoogle Scholar
  2. Alothman M, Bhat R, Karim A (2009) UV radiation-induced changes of antioxidant capacity of fresh-cut tropical fruits. Innov Food Sci Emerg Technol 10:512–516CrossRefGoogle Scholar
  3. Bouayed J, Piri K, Rammal H, Dicko A, Desor F, Younos C, Soulimani R (2007) Comparative evaluation of the antioxidant potential of some Iranian medicinal plants. Food Chem 104:364–368CrossRefGoogle Scholar
  4. Cardinali A, Pati S, Minervini F, D’Antuono I, Linsalata V, Lattanzio V (2012) Verbascoside, isoverbascoside, and their derivatives recovered from olive mill wastewater as possible food antioxidants. J Agric Food Chem 60:1822–1829CrossRefGoogle Scholar
  5. Casati P, Walbot V (2003) Gene expression profiling in response to ultraviolet radiation in maize genotypes with varying flavonoid content. Plant Physiol 132:1739–1754CrossRefGoogle Scholar
  6. Cassidy A, Hanley B, Lamuela-Raventos RM (2000) Review: isoflavones, lignans and stilbenes—origins, metabolism and potential importance to human health. J Sci Food Agric 80:1044–1062.CrossRefGoogle Scholar
  7. Chen RC, Su JH, Yang SM, Li J, Wang TJ, Zhou H (2002) Effect of isoverbascoside, a phenylpropanoid glycoside antioxidant, on proliferation and differentiation of human gastric cancer cell. Acta Pharmacol Sin 23:997–1001Google Scholar
  8. Coimbra MC, Russo-Chagas RC, PáduaVilela MS, Fonsêca Castro AH (2019) Growth, morphology and bioactive phenolic compounds production in Pyrostegia venusta calli. Biocatal Agric Biotechnol 18:101036CrossRefGoogle Scholar
  9. De Queiroz Braga K, Coimbra MC, Fonsêca Castro AH (2015) In vitro germination, callus induction and phenolic compounds contents from Pyrostegia venusta (Ker Gawl.) Miers. Acta Sci 37:151–158CrossRefGoogle Scholar
  10. Dubey R, Misra K (1976) Chemical components of Pyrostegia venusta flowers. J Ind Chem Soc 53:378–381Google Scholar
  11. Dykes L, Rooney L (2007) Phenolic compounds in cereal grains and their health benefits. Cereal Foods World 52:105–111.  https://doi.org/10.1094/CFW-52-3-0105 Google Scholar
  12. Ferreira DT, Alvares PSM, Houghton PJ, Braz R (2000) Chemical constituents from roots of Pyrostegia venusta and considerations about its medicinal importance. Quim Nova 23:42–46CrossRefGoogle Scholar
  13. Gonzalez C, Corbacho AM, Eiserich JP, Garcia C, Lopez-Barrera F, Morales-Tlalpan V, Barajas-Espinosa A, Diaz-Muñoz M, Rubio R, Lin SH, Martinez de la Escalera G, Clapp C (2004) 16K-prolactin inhibits activation of endothelial nitric oxide synthase, intracellular calcium mobilization, and endothelium dependent vasorelaxation. Endocrinology 145:5714–5722CrossRefGoogle Scholar
  14. Guarnerio CF, Fraccaroli M, Gonzo I, Pressi G, Dal Toso R, Guzzo F, Levi M (2012) Metabolomic analysis reveals that the accumulation of specific secondary metabolites in Echinacea angustifolia cells cultured in vitro can be controlled by light. Plant Cell Rep 31:361–367CrossRefGoogle Scholar
  15. Hollósy F (2002) Effect of ultraviolet radiation on plants. Micron 33:179–197CrossRefGoogle Scholar
  16. Hussain MS, Fareed S, Ansari S, Rahman MA, Ahmad IZ, Saeed M (2012) Current approaches toward production of secondary plant metabolites. J Pharm Bioallied Sci 4:10–20CrossRefGoogle Scholar
  17. Jarrett C, Lekic M, Smith CL, Pusec CM, Sweazea KL (2013) Mechanisms of acetylcholine-mediated vasodilation in systemic arteries from mourning doves (Zenaida macroura). J Compar Physiol B 183:959–967CrossRefGoogle Scholar
  18. Keunen E, Peshev D, Vangronsveld J, Den Ende WV, Cuypers A (2013) Plant sugars are crucial players in the oxidative challenge during abiotic stress: extending the traditional concept. Plant Cell Environ 36:1242–1255CrossRefGoogle Scholar
  19. Korkina LG (2007) Phenylpropanoids as naturally occurring antioxidants: from plant defense to human health. Cell Mol Biol 53:15–25Google Scholar
  20. Kylli P, Nousiainen P, Biely P, Sipilä J, Tenkanen M, Heinonen M (2008) Antioxidant potential of hydroxycinnamic acid glycoside esters. J Agric Food Chem 56:4797–4805CrossRefGoogle Scholar
  21. Loredo-Carrillo S, Santos-Díaz ML, Leyva E, Santos-Díaz MS (2013) Establishment of callus from Pyrostegia venusta (Ker Gawl.) Miers and effect of abiotic stress on flavonoids and sterols accumulation. J Plant Biochem Biotechnol 22:312–318CrossRefGoogle Scholar
  22. Luna-Vázquez FJ, Ibarra-Alvarado C, Rojas-Molina A, Rojas-Molina I, Zavala-Sánchez MA (2013) Vasodilator compounds derived from plants and their mechanisms of action. Molecules 18:5814–5857CrossRefGoogle Scholar
  23. Martin S, Andriambeloson E, Takeda K, Andriantsitohaina R (2002) Red wine polyphenols increase calcium in bovine aortic endothelial cells: a basis to elucidate signaling pathways leading to nitric oxide production. Br J Pharmacol 135:1579–1587CrossRefGoogle Scholar
  24. Meda A, Lamien CE, Romito M, Millogo J, Nacoulma OG (2005) Determination of the total phenolic, flavonoid and proline contents in Bukinafasan honey as well as their radical scavenging activity. Food Chem 91:571–577CrossRefGoogle Scholar
  25. Moreira CG, Horinouchi CD, Souza-Filho CS, Campos FR, Barison A, Cabrini DA, Otuki MF (2012) Hyperpigmentant activity of leaves and flowers extracts of Pyrostegia venusta on murine B16F10 melanoma. J Ethnopharmacol 141:1005–1011CrossRefGoogle Scholar
  26. Mostafa NM, El-Dahshan O, Singab ANB (2013) Pyrostegia venusta (Ker Gawl.) Miers: a botanical, pharmacological and phytochemical review. Med Aromat Plant 2:1–6CrossRefGoogle Scholar
  27. Mukherjee PK, Chaudhary SK, Nema N, Saha BP (2013) Botanicals as angiotensin converting enzyme inhibitors useful in hypertension. In: Maulik N (ed) Cardiovascular diseases: nutritional and therapeutic interventions. CRC Press, Boca Raton, pp 541–559CrossRefGoogle Scholar
  28. Mullen W, Mcginn J, Lean ME, Maclean MR, Gardner P, Duthie GG, Yokota T, Crozier A (2002) Ellagitannins, flavonoids, and other phenolics in red raspberries and their contribution to antioxidant capacity and vasorelaxation properties. J Agric Food Chem 50:5191–5196CrossRefGoogle Scholar
  29. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  30. Nakamura T, Saito Y, Ohyama Y, Masuda H, Sumino H, Kuro M, Nabeshima Y, Nagai R, Kurabayashi M (2002) Production of nitric oxide, but not prostacyclin, is reduced in klotho mice. Jpn J Pharmacol 89:149–156CrossRefGoogle Scholar
  31. Navarro-Tovar G (2009) Cuantificación y caracterización de metabolitos secundarios y micronutrientes (hierro, cobre, zinc) en los tejidos de la planta Pyrostegia venusta (Ker Gawl.) Miers. Master Science Thesis. Faculty of Chemistry, University of San Luis Potosí, MéxicoGoogle Scholar
  32. Oh H, Kang DG, Kwon TO, Jang KK, Chai KY, Yun YG, Chung HT, Lee HS (2003) Four glycosides from the leaves of Abeliophyllum distichum with inhibitory effects on angiotensin converting enzyme. Phytother Res 17:811–813CrossRefGoogle Scholar
  33. Pereira AM, Hernandes C, Pereira SIV, Bertoni BW, França SC, Pereira PS, Taleb-Contini SH (2014) Evaluation of anticandidal and antioxidant activities of phenolic compounds from Pyrostegia venusta (Ker Gawl.) Miers. Chem Biol Interact 224:136–141CrossRefGoogle Scholar
  34. Proestos C, Boziaris IS, Nychas GJE, Komaitis M (2006) Analysis of flavonoids and phenolic acids in Greek aromatic plants: investigation of their antioxidant capacity and antimicrobial activity. Food Chem 95:664–671CrossRefGoogle Scholar
  35. Ramakrishna V, Jailkhani R (2007) Evaluation of oxidative stress in insulin dependent diabetes mellitus (IDDM) patients. Diagn Pathol 2:22CrossRefGoogle Scholar
  36. Rao R, Ravishanka GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 20:101–153CrossRefGoogle Scholar
  37. Reedy AR, Chaitanya KV, Vivekanandan M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202CrossRefGoogle Scholar
  38. Rizzo AM, Berselli P, Zava S, Montorfano G, Negroni M, Corsetto P, Berra B (2010) Endogenous antioxidants and radical scavengers. In: Gigardi MT, Rea G, Berra B (eds) Biofarms for nutraceuticals: functional food and safety control by biosensors. Springer, Boston, pp 52–67CrossRefGoogle Scholar
  39. Roy P, Amdekar S, Kumar A, Singh B (2011) Preliminary study of the antioxidant properties of flowers and roots of Pyrostegia venusta (Ker Gawl) Miers. BMC Complement Altern Med 11:69CrossRefGoogle Scholar
  40. Ruan CH, Dixon RA, Willerson JT, Ruan KH (2010) Prostacyclin therapy for pulmonary arterial hypertension. Tex Heart Inst J 37:391–399Google Scholar
  41. Ruffoni B, Pistelli L, Bertoli A, Pistelli L (2010) Plant cell cultures: bioreactors for industrial production. In: Gigardi MT, Rea G, Berra B (eds) Biofarms for nutraceuticals: functional food and safety control by biosensors. Springer, Boston, pp 203–221CrossRefGoogle Scholar
  42. Santos MB, Blatt CTT (1998) Teor de flavonóides e fenóis totais em folhas de Pyrostegia venusta Miers, de mata e de cerrado. Rev Bras Bot 21:135–140CrossRefGoogle Scholar
  43. Santos-Zea L, Gutierrez-Uribe JA, Serna-Saldivar SO (2011) Comparative analyses of total phenols, antioxidant activity, and flavonol glycoside profile of cladode flours from different varieties of Opuntia spp. J Agric Food Chem 59:7054–7061CrossRefGoogle Scholar
  44. Silva RM, Rodrigues DTM, Augustos FS, Valadares F, Neto PO, Dos Santos L, Silva LP (2012) Antitumor and cytotoxic activity of Kielmeyera coriacea Mart. Zucc. and Pyrostegia venusta (Ker-Gawl.) Miers extracts. J Med Plants Res 6:4142–4148Google Scholar
  45. Solfanelli C, Poggi A, Loreti E, Alpi A, Perata P (2006) Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis. Plant Physiol 140:637–646CrossRefGoogle Scholar
  46. Tenorio FA, Torres JC, Zarco G, Díaz J, Pastelín G, Del Valle L (2008) El óxido nítrico y las enfermedades cardiovasculares: cardioprotección versus cardiotoxicidad. Rev Mex Cienc Farm 39:39–48Google Scholar
  47. Vanhoutte PM, Shimokawa H, Tang EHC, Feletou M (2009) Endothelial dysfunction and vascular disease. Acta Physiol 196:193–222CrossRefGoogle Scholar
  48. Veloso CC, Cabral LDM, Bitencourt AD, Franqui LS, Santa-Cecília FV, Dias DF, Soncini R, Vilela FC, Giusti-Paiva A (2012) Anti-inflammatory and antinociceptive effects of the hydroethanolic extract of the flowers of Pyrostegia venusta in mice. Rev Bras Farmacogn 22:162–168CrossRefGoogle Scholar
  49. Vita J, Keaney J (2002) Endothelial function: a barometer for cardiovascular risk? Circulation 106:640–642CrossRefGoogle Scholar
  50. Waterhouse AL (2003) Determination of total phenolics. Curr Protoc Food Anal Chem 6(1):I1Google Scholar
  51. Yoshikawa M, Matsuda H, Morikawa T, Xie H, Nakamuraa S, Muraokab O (2006) Phenylethanoid oligoglycosides and acylated oligosugars with vasorelaxant activity from Cistanche tubulosaq. Bioorgan Med Chem 14:7468–7475CrossRefGoogle Scholar
  52. Zhou F, Zhao Y, Li M, Xu T, Zhang L, Lu B, Wu X, Zhiwei G (2017) Degradation of phenylethanoid glycosides in Osmanthus fragrans Lour. flowers and its effect on antihypoxia activity. Sci Rep 7:10068–10077CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Antonio Reyes-Martínez
    • 1
  • Juan Roberto Valle-Aguilera
    • 2
  • Marilena Antunes-Ricardo
    • 3
  • Janet Gutiérrez-Uribe
    • 4
  • Carmen Gonzalez
    • 1
  • María del Socorro Santos-Díaz
    • 1
    Email author
  1. 1.Facultad de Ciencias QuímicasUniversidad Autónoma de San Luis PotosíSan Luis PotosíMéxico
  2. 2.Facultad de MedicinaUniversidad Autónoma de San Luis PotosíSan Luis PotosíMéxico
  3. 3.Tecnológico de Monterrey, Centro de Biotecnología-FEMSA, Escuela de Ingeniería y CienciasMonterreyMéxico
  4. 4.Department of Bioengineering and ScienceTecnológico de MonterreyPueblaMéxico

Personalised recommendations