Advertisement

Plant Cell, Tissue and Organ Culture (PCTOC)

, Volume 139, Issue 1, pp 77–89 | Cite as

CO2 enrichment and supporting material impact the primary metabolism and 20-hydroxyecdysone levels in Brazilian ginseng grown under photoautotrophy

  • Perácio Rafael Bueno Ferreira
  • Ana Claudia Ferreira da Cruz
  • Diego Silva Batista
  • Lays Araújo Nery
  • Itainá Gonçalves Andrade
  • Diego Ismael Rocha
  • Sérgio Heitor Sousa Felipe
  • Andréa Dias Koehler
  • Adriano Nunes-Nesi
  • Wagner Campos OtoniEmail author
Original Article
  • 47 Downloads

Abstract

In vitro photoautotrophic propagation system has been successfully established for Pfaffia glomerata, a medicinal species that produces the phytoecdysteroid 20-hydroxyecdysone (20E) under forced ventilation and CO2 enrichment. For that, an adequate supporting material with high porosity in place of agar is required. In this study, we investigated metabolic and morpho-anatomical alterations of two accessions (Ac) of P. glomerata (Ac 22 and Ac 43) under photoautotrophy conditions, using two supporting materials (agar and Florialite®) and two CO2 concentrations (360 and 1000 µL CO2 L−1). High CO2 concentration and the use of Florialite® as supporting material enhanced the production of 20E, and influenced on the levels of amino acids, sugars, tricarboxylic acid cycle intermediates, stress related metabolites (aromatic amines and shikimate), and osmotic adjustment-related compounds (hydroxyproline, aspartate and myo-inositol). Interestingly, Ac 22 displayed less tolerance to stress caused by low photoautotrophy compared to Ac 43, as indicated by the higher total polyamines in Ac 22. Moreover, the accessions showed different metabolic responses under photoautotrophy. These findings provide a better understanding of how the supporting material and CO2 enrichment influence in vitro metabolism under photoautotrophic system in P. glomerata, wherein higher levels of gas exchange, enabled by use of Florialite® and CO2 enrichment, increased total sugars as well as the levels of 20E in the plants. This information will be fundamental to optimize the in vitro culture systems of P. glomerata for the production of 20E.

Key message

Photoautotrophic propagation has the unique advantage of combining biological and environmental perspectives, resulting in morpho-physiologically well-adjusted plants grown in vitro or ex vitro. Our results revealed that the combined use of CO2 enrichment (1000 μL CO2 L−1) and supporting material (Florialite®) had great influence in the in vitro performance of P. glomerata and increased 20-hydroxyecdysone content. This combination also led to increased levels of amino acids, sugars, TCA cycle intermediates, and stress-related metabolites such as aromatic amines and shikimate, and osmotic adjustment-related compounds (hydroxyproline, aspartate, and myo-inositol).

Keywords

Amaranthaceae CO2 enrichment Metabolomics Pfaffia glomerata Photoautotrophic growth 

Notes

Acknowledgements

Prof. Takeshi Kamada (Universidade de Rio Verde, Rio Verde, GO, Brazil), Dr. Roberto Fontes Vieira and Dr. Rosa Belém das Neves Alves (National Center for Genetic Resources and Biotechnology—Embrapa/Cenargen, Brasília, DF, Brazil) are acknowledged for providing P. glomerata accessions. The authors are also grateful to the Núcleo de Análise de Biomoléculas (NuBiomol) of the Universidade Federal de Viçosa for providing the facilities for the metabolite analysis. PRBF was recipient of a scholarship from CAPES.

Author contributions

PRBF and WCO planned and designed the research. PRBF, DSB, ACFC, ADK, and SHF conducted experiments and analyzed the data. IGA conducted and photographed part of the experiments. LAN and DIR contributed with anatomy analysis and manuscript writing. PRBF wrote the manuscript, WCO, DSB and AN-N reviewed and corrected it.

Funding

This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (Brasília, DF, Brazil) [Grants MCT/CNPq 480675/2009-0; PDJ 500874/2012-3; PQ 303201/2010-10 to WCO], Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) (Belo Horizonte, MG, Brazil) [Grants PRONEX-CAG-APQ-01036-09; CRA-APQ-01651-13; CRA-BPD-00046-14; CBB-BPD-00020-16; RED-00053-16]; and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (Brasília, DF, Brazil) Finance Code 001 and CAPES—PNPD. RPBS was recipient of a scholarship from CAPES.

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflict of interest.

Supplementary material

11240_2019_1664_MOESM1_ESM.docx (71 kb)
Supplementary material 1 (DOCX 71 kb)

References

  1. Afreen-Zobayed F, Zobayed SMA, Kubota C, Kozai T, Hasegawa O (1999) Supporting material affects the growth and development of in vitro sweet potato plantlets cultured photoautotrophically. In Vitro Cell Dev Biol Plant 35:470–474.  https://doi.org/10.1007/s11627-999-0070-5 CrossRefGoogle Scholar
  2. Ahmed S, Hahn EJ, Paek K (2008) Aeration volume and photosynthetic photon flux affect cell growth and secondary metabolite contents in bioreactor cultures of Morinda citrifolia. J Plant Biol 51:209–212.  https://doi.org/10.1007/BF03030700 CrossRefGoogle Scholar
  3. Badr A, Angers P, Desjardins Y (2011) Metabolic profiling of photoautotrophic and photomixotrophic potato plantlets (Solanum tuberosum) provides new insights into acclimatization. Plant Cell Tiss Organ Cult 107:13–24.  https://doi.org/10.1007/s11240-011-9951-5 CrossRefGoogle Scholar
  4. Badr A, Angers P, Desjardins Y (2015) Comprehensive analysis of in vitro to ex vitro transition of tissue cultured potato plantlets grown with or without sucrose using metabolic profiling technique. Plant Cell Tiss Organ Cult 122:491–508.  https://doi.org/10.1007/s11240-015-0786-3 CrossRefGoogle Scholar
  5. Batista DS, Castro KM, Koehler AD, Porto BN, Silva AR, Souza VC, Teixeira ML, Cardoso MG, Santos MO, Viccini LF, Otoni WC (2017) Elevated CO2 improves growth, modifies anatomy, and modulates essential oil qualitative production and gene expression in Lippia alba (Verbenaceae). Plant Cell Tiss Organ Cult 128:357–368.  https://doi.org/10.1007/s11240-016-1115-1 CrossRefGoogle Scholar
  6. Batista DS, Felipe SHS, Silva TD, Castro KM, Mamedes-Rodrigues TC, Miranda NA, Ríos-Ríos AM, Faria DV, Fortini EA, Chagas K, Torres-Silva G, Xavier A, Arencibia AD, Otoni WC (2018) Light quality in plant tissue culture: does it matter? In Vitro Cell Dev Biol Plant 54:195–215.  https://doi.org/10.1007/s11627-018-9902-5 CrossRefGoogle Scholar
  7. Batista DS, Koehler AD, Romanel E, Souza VC, Silva TD, Almeida MC, Maciel TEF, Ferreira PRB, Felipe SHS, Saldanha CW, Maldaner J, Dias LLC, Festucci-Buselli RA, Otoni WC (2019) De novo assembly and transcriptome of Pfaffia glomerata uncovers the role of photoautotrophy and the P450 family genes in 20-hydroxyecdysone production. Protoplasma 256:601–614.  https://doi.org/10.1007/s00709-018-1322-1 CrossRefGoogle Scholar
  8. Bernard B, Gautier B (2005) Use of ecdysteroids for preparing dermatological or cosmetological anti-hair loss compositions. United States Patent, US 0137175 A1Google Scholar
  9. Boone CHT, Grove RA, Adamcova D, Seravalli J, Adamec J (2017) Oxidative stress, metabolomics profiling, and mechanism of local anesthetic induced cell death in yeast. Redox Biol 12:139–149.  https://doi.org/10.1016/j.redox.2017.01.025 CrossRefGoogle Scholar
  10. Cha-Um S, Kirdmanee C (2008) Effect of osmotic stress on proline accumulation, photosynthetic abilities and growth of sugarcane plantlets (Saccharum officinarum L.). Pak J Bot 40:2541–2552Google Scholar
  11. Correa JPO, Viibtal CE, Pinheiro MVM, Batista DS, Azevedo JFL, Saldanha CW, Cruz ACF, DaMatta FM, Otoni WC (2015) In vitro photoautotrophic potential and ex vitro photosynthetic competence of Pfaffia glomerata (Spreng.) Pedersen accessions. Plant Cell Tiss Organ Cult 121:289–300.  https://doi.org/10.1007/s11240-014-0700-4 CrossRefGoogle Scholar
  12. Correa JPO, Vital CE, Pinheiro MVM, Batista DS, Saldanha CW, Cruz ACF, Notoni MM, Freitas DMS, DaMatta FM, Otoni WC (2016) Induced polyploidization increases 20-hydroxyecdysone content, in vitro photoautotrophic growth, and ex vitro biomass accumulation in Pfaffia glomerata (Spreng.) Pedersen. In Vitro Cell Dev Biol Plant 52:45–55.  https://doi.org/10.1007/s11627-016-9746-9 CrossRefGoogle Scholar
  13. Cruz CD (2013) GENES—a software package for analysis in experimental statistics and quantitative genetics. Acta Sci 35:271–276.  https://doi.org/10.4025/actasciagron.v35i3.21251 Google Scholar
  14. Desjardins Y, Dubuc JF, Badr A (2009) In vitro culture of plants: a stressful activity. Acta Hortic 812:29–50.  https://doi.org/10.17660/ActaHortic.2009.812.1 CrossRefGoogle Scholar
  15. Dias FCR, Martins ALP, Melo FCSA, Cupertino MC, Gomes MLM, Oliveira JM, Damasceno EM, Silva J, Otoni WC, Matta SLP (2019) Hydroalcoholic extract of Pfaffia glomerata alters the organization of the seminiferous tubules by modulating the oxidative state and the microstructural reorganization of the mice testes. J Ethnopharmacol 233:179–189.  https://doi.org/10.1016/j.jep.2018.12.047 CrossRefGoogle Scholar
  16. Eskling M, Akerlund HE (1998) Changes in the quantities of violaxanthin de-epoxidase, xanthophylls and ascorbate in spinach upon shift from low to high ligh. Photosynth Res 57:41–50.  https://doi.org/10.1023/A:1006015630 CrossRefGoogle Scholar
  17. Gibson SI (2004) Sugar and phytohormone response pathways: navigating a signalling network. J Exp Bot 55:253–264.  https://doi.org/10.1093/jxb/erh048 CrossRefGoogle Scholar
  18. Gill SS, Tuteja M (2010) Polyamines and abiotic stress tolerance in plants. Plant Signal Behav 5:26–33.  https://doi.org/10.4161/psb.5.1.10291 CrossRefGoogle Scholar
  19. Gomes ACMM, Nicole M, Mattos JK, Pereira SIV, Pereira P, Silva DB, Vieira R, Capeville G, Moita AW, Carneiro RMDG (2010) Concentration of β-ecydisone (20E) in susceptible and resistant accessions of Pfaffia glomerata infected with Meloidogyne incognita and histological characterisation of resistance. Nematology 12:701–709.  https://doi.org/10.1163/138855409X12597616267771 CrossRefGoogle Scholar
  20. Han YZ, Zhou Y, Zhang ZT, Niu SY, Liu XH, Jia XY (2018) Three new noroleanane-type triterpenes from the roots of Pfaffia glomerata. J Asian Nat Prod Res 20(5):460–466.  https://doi.org/10.1080/10286020.2017.1343820 CrossRefGoogle Scholar
  21. Iarema L, Cruz ACF, Saldanha CW, Dias LLC, Fontes RV, Oliveira EJ, Otoni WC (2012) Photoautotrophic propagation of Brazilian ginseng [Pfaffia glomerata (Spreng.) Pedersen]. Plant Cell Tiss Organ Cult 110:227–238.  https://doi.org/10.1007/s11240-016-1089- CrossRefGoogle Scholar
  22. Ibrahim MH, Jaafar HZ (2012) Impact of elevated carbon dioxide on primary, secondary metabolites and antioxidant responses of Eleais guineensis Jacq. (oil palm) seedlings. Molecules 17:5195–5211.  https://doi.org/10.3390/molecules17055195 CrossRefGoogle Scholar
  23. Jozwiak A, Ples M, Skorupinka-Tudek K, Kania M, Dydak M, Danikiewicz W, Swiezewska E (2013) Sugar availability modulates polyisoprenoid and phytosterol profiles in Arabidopsis thaliana hairy root culture. Biochim Biophys Acta 1831:438–447.  https://doi.org/10.1016/j.bbalip.2012.11.006 CrossRefGoogle Scholar
  24. Kamada T (2006) Avaliação da diversidade genética de populações de fáfia (Pfaffia glomerata (Spreng.) Pedersen) por RAPD, caracteres morfológicos e teor de beta-ecdisona. Tese de doutorado, Universidade Federal de Viçosa, Viçosa, MG, Brazil. http://locus.ufv.br/handle/123456789/1298. Accessed 16 Jan 2017
  25. Kamada T, Picoli EAT, Vieira RF, Barbosa LCA, Cruz CD, Otoni WC (2009) Variação dos caracteres morfológicos e fisiológicos de populações naturais de Pfaffia glomerata (Spreng.) Pederson e correlação com a produção de β-ecdisona. Rev Bras Plantas Med 11:247–256.  https://doi.org/10.1007/s11240-016-1089-z CrossRefGoogle Scholar
  26. Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J Cell Biol 10: 188–204. http://www.jstor.org/stable/1604673. Accessed 16 Jan 2017
  27. Kirdmanee C, Kitaya Y, Kozai T (1995) Effects of CO2 enrichment and supporting material in vitro on photoautotrophic growth of Eucalyptus plantlets in vitro and ex vitro. In Vitro Cell Dev Biol Plant 31:144–149.  https://doi.org/10.1007/BF02632010 CrossRefGoogle Scholar
  28. Kozai T, Kubota C (2001) Developing a photoautotrophic micropropagation system for woody plants. J Plant Res 114:525–537.  https://doi.org/10.1007/PL00014020 CrossRefGoogle Scholar
  29. Kruger LC, Volin JC (2006) Reexamining the empirical relation between plant growth and leaf photosynthesis. Funct Plant Biol 33:421–429.  https://doi.org/10.1071/FP05310 CrossRefGoogle Scholar
  30. Lavola A, Julkunen-Tiito R (1994) The effect of elevated carbon dioxide and fertilization on primary and secondary metabolites in birch, Betula pendula (Roth). Oecologia 99:315–321.  https://doi.org/10.1007/BF00627744 CrossRefGoogle Scholar
  31. Levitsky DO, Dembistky VM (2015) Anti-breast cancer agents derived from plants. Nat Prod Bioprospect 5:1–16.  https://doi.org/10.1007/s13659-014-0048-9 CrossRefGoogle Scholar
  32. Lisec J, Shauer N, Kopka J, Willmitzer L, Fernier AR (2006) Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat Prot 1:387–396.  https://doi.org/10.1038/nprot.2006.59 CrossRefGoogle Scholar
  33. Lommem A (2009) MetAlign: interface-driven, versatile metabolomics tools for hyphenated full-scan mass spectrometry data processing. Anal Chem 81:3079–3083.  https://doi.org/10.1021/ac900036d CrossRefGoogle Scholar
  34. Marriot P, Sarasan V (2010) Novel micropropagation and weaning methods for the integrated conservation of a critically endangered tree species, Medusagyne oppositifolia. In Vitro Cell Dev Biol Plant 46:516–523.  https://doi.org/10.1007/s11627-010-9321-8 CrossRefGoogle Scholar
  35. Martins JPR, Verdoodt V, Pasqual M, De Proft M (2016) Physiological responses by Billbergia zebrina (Bromeliaceae) when grown under controlled microenvironmental conditions. Afr J Biotechnol 15:1952–1961.  https://doi.org/10.5897/AJB2016.15584 CrossRefGoogle Scholar
  36. Mendes FR (2011) Tonic, fortifier and aphrodisiac: adaptogens in the Brazilian folk medicine. Rev Bras Farmacogn 21:754–763.  https://doi.org/10.1590/S0102-695X2011005000097 CrossRefGoogle Scholar
  37. Mroczek A (2015) Phytochemistry and bioactivity of triterpene saponins from Amaranthaceae family. Phytochemistry 14:577–605.  https://doi.org/10.1007/s11101-015-9394-4 CrossRefGoogle Scholar
  38. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497.  https://doi.org/10.1111/j.1399-3054.1962.tb08052.x CrossRefGoogle Scholar
  39. Ngyuen QT, Xiao Y, Kozai T (2016) Photoautotrophic propagation. In: Kozai T, Niu G, Takagaki M (eds) Plant factory. An indoor vertical farming system for efficient quality food production. Academic Press, Cambridge, p 432Google Scholar
  40. O’Brien TP, McCully ME (1981) The study of plant structure principles and selected methods, vol 14, 1st edn. Termarcarphi Pty, Melbourne, p 357Google Scholar
  41. Oh M-M, Seo JH, Park JS, Son JE (2012) Physicochemical properties of mixtures of inorganic supporting materials affect growth of potato (Solanum tuberosum L.) plantlets cultured photoautotrophically in a nutrient-circulated micropropagation system. Hortic Environ Biotechnol 53:497–504.  https://doi.org/10.1007/s13580-012-0043-1 CrossRefGoogle Scholar
  42. Olalde JA (2008) Multiple sclerosis synergistic phyto-nutraceutical composition. United States Patent, US 0081046 A1Google Scholar
  43. Paudel JR, Amirizian A, Krosse S, Giddings J, Ismail SAA, Xia J, Gloer JB, Dam NM, Bede JC (2016) Effect of atmospheric carbon dioxide levels and nitrate fertilization on glucosinolate biosynthesis in mechanically damaged Arabidopsis plants. BMC Plant Biol 16:68.  https://doi.org/10.1186/s12870-016-0752-1 CrossRefGoogle Scholar
  44. Pérez-Jímenez M, López-Perez AJ, Otalora-Alcon G, Marin-Nicolas D, Piñero MC, Amor FM (2015) A regime of high CO2 concentration improves the acclimatization process and increases plant quality and survival. Plant Cell Tiss Organ Cult 121:547–557.  https://doi.org/10.1007/s11240-015-0724-4 CrossRefGoogle Scholar
  45. Pott A, Pott VS (1994) Plantas do pantanal. Embrapa-SPI, CorumbáGoogle Scholar
  46. Ranasinghe S, Taylor G (1996) Mechanism for increased leaf growth in elevated CO2. J Exp Bot 47:349–358.  https://doi.org/10.1093/jxb/47.3.349 CrossRefGoogle Scholar
  47. Richet N, Afif D, Tozo K, Pollet B, Maillard P, Huber F, Priault P, Banvoy J, Gross P, Dizengremel P, Lapierre C (2012) Elevated CO2 and/or ozone modify lignification in the wood of poplars (Populus tremula × alba). J Exp Bot 63:4291–4301.  https://doi.org/10.1093/jxb/ers118 CrossRefGoogle Scholar
  48. Saldanha CW, Otoni CG, Azevedo JLF, Dias LLC, Rêgo MM, Otoni WC (2012) A low-cost alternative membrane system that promotes growth in nodal cultures of Brazilian ginseng [Pfaffia glomerata (Spreng.) Pedersen]. Plant Cell Tiss Organ Cult 110:413–422.  https://doi.org/10.1007/s11240-012-0162-5 CrossRefGoogle Scholar
  49. Saldanha CW, Otoni CG, Notini MN, Kuki KN, Cruz ACF, Neto AR, Dias LLC, Otoni WC (2013) A CO2-enriched atmosphere improves in vitro growth of Brazilian ginseng [Pfaffia glomerata (Spreng.) Pedersen]. In Vitro Cell Dev Biol Plant 49:433–444.  https://doi.org/10.1007/s11627-013-9529-5 CrossRefGoogle Scholar
  50. Saldanha CW, Otoni CG, Rocha DI, Cavatte PC, Detmann KSC, Tanaka FAO, Dias LLC, DaMatta FM, Otoni WC (2014) A CO2-enriched atmosphere and supporting material impact the growth morphophysiology and ultrastructure of in vitro Brazilian ginseng [Pfaffia glomerata (Spreng.) Pedersen] plantlets. Plant Cell Tiss Organ Cult 118:87–99.  https://doi.org/10.1007/s11240-014-0464-x CrossRefGoogle Scholar
  51. Scott RJ, Knott M (1974) A cluster analysis method for grouping means in the analysis of variance. Biometric 30:507–512.  https://doi.org/10.2307/2529204 CrossRefGoogle Scholar
  52. Shin KS, Park SY, Paek KY (2014) Physiological and biochemical changes during acclimatization in a Doritaenopsis hybrid cultivated in different microenvironments in vitro. Environ Exp Bot 100:26–33.  https://doi.org/10.1016/j.envexpbot.2013.12.004 CrossRefGoogle Scholar
  53. Sicher RC (2008) Effects of CO2 enrichment on soluble amino acids and organic acids in barley primary leaves as a function of age, photoperiod and chlorosis. Plant Sci 174:576–582.  https://doi.org/10.1016/j.plantsci.2008.03.001 CrossRefGoogle Scholar
  54. Silva TD, Chagas K, Batista DS, Felipe SHS, Louback E, Machado LT, Fernandes AM, Buttrós VHT, Koehler AD, Farias LM, Santos AF, Silva PO, Otoni WC (2019) Morpho-physiological in vitro performance of Brazilian ginseng [Pfaffia glomerata (Spreng.) Pedersen] based on culture media formulations. In Vitro Cell Dev Biol Plant.  https://doi.org/10.1007/s11627-019-10003-9 Google Scholar
  55. Sima B, Desjardins Y (2001) Sucrose supply enhances phosphoenolpyruvate carboxylase phosphorylation level in in vitro Solanum tuberosum. Plant Cell Tiss Organ Cult 67:235–242.  https://doi.org/10.1023/A:1012787507223 CrossRefGoogle Scholar
  56. Thorpe T, Stasolla C, Yeung EC, De Klerk GJ, Roberts A, George EF (2008) The components of plant tissue culture media II: organic additions, osmotic and pH effects, and support systems. In: George EF, Hall MA, De Klerk GJ (eds) Plant propagation by tissue culture, vol 1, 3rd edn. The background. Springer, Dordrecht, pp 115–173Google Scholar
  57. Vardanega R, Carvalho PI, Albarelli JQ, Santos DT, Meireles MAA (2017) Techno-economic evaluation of obtaining Brazilian ginseng extracts in potential production scenarios. Food Bioprod Process 101:45–55.  https://doi.org/10.1016/j.fbp.2016.10.010 CrossRefGoogle Scholar
  58. Vasconcelos JM, Saldanha CW, Dias LLC, Maldaner J, Rêgo MM, Silva LC, Otoni WC (2014) In vitro propagation of Brazilian ginseng [Pfaffia glomerata (Spreng.) Pedersen] as affected by carbon sources. In Vitro Cell Dev Biol Plant 50:746–751.  https://doi.org/10.1007/s11627-014-9651-z CrossRefGoogle Scholar
  59. Xia J, Wishart DS (2016) Using MetaboAnalyst 3.0 for comprehensive metabolomics data analysis. Curr Prot Bioinform 55:14.10.1–14.10.91.  https://doi.org/10.1002/cpbi.11 CrossRefGoogle Scholar
  60. Xiao Y, Niu G, Kozai T (2011) Development and application of photoautotrophic micropropagation plant system. Plant Cell Tiss Organ Cult 105:149–158.  https://doi.org/10.1007/s11240-010-9863-9 CrossRefGoogle Scholar
  61. Yu J, Du H, Xu M, Huang B (2012) Metabolic responses to heat stress under elevated atmospheric CO2 concentration in a cool-season grass species. J Am Soc Hortic Sci 137:221–228.  https://doi.org/10.21273/JASHS.137.4.221 CrossRefGoogle Scholar
  62. Zobayed SMA, Saxena PK (2004) Production of St. John’s Wort plants under controlled environment for maximizing biomass and secondary metabolites. In Vitro Cell Dev Biol Plant 40:108–114.  https://doi.org/10.1079/IVP2003498 CrossRefGoogle Scholar
  63. Zobayed SMA, Kubota C, Kozai T (1999) Development of a forced ventilation micropropagation system for large-scale photoautotrophic culture and its utilization in sweet potato. In Vitro Cell Dev Biol Plant 35:350–355.  https://doi.org/10.1007/s11627-999-0047-4 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Perácio Rafael Bueno Ferreira
    • 1
  • Ana Claudia Ferreira da Cruz
    • 1
  • Diego Silva Batista
    • 2
  • Lays Araújo Nery
    • 3
  • Itainá Gonçalves Andrade
    • 1
  • Diego Ismael Rocha
    • 4
  • Sérgio Heitor Sousa Felipe
    • 1
  • Andréa Dias Koehler
    • 1
  • Adriano Nunes-Nesi
    • 5
  • Wagner Campos Otoni
    • 1
    Email author
  1. 1.Laboratório de Cultura de Tecidos/BIOAGRO, Departamento de Biologia VegetalUniversidade Federal de ViçosaViçosaBrazil
  2. 2.Programa de Pós-Graduação em Agricultura e AmbienteUniversidade Estadual do MaranhãoSão LuísBrazil
  3. 3.Instituto Federal do Norte de Minas Gerais – IFNMGAlmenaraBrazil
  4. 4.Laboratório de Anatomia e Desenvolvimento VegetalUniversidade Federal de GoiásJataíBrazil
  5. 5.Departamento de Biologia VegetalUniversidade Federal de ViçosaViçosaBrazil

Personalised recommendations