Advertisement

Effect of sucrose on physiological and biochemical changes of proliferated shoots of Bambusa vulgaris Schrad. Ex Wendl in temporary immersion

  • Yudith García-RamírezEmail author
  • Gloria Patricia Barrera
  • Marisol Freire-Seijo
  • Raúl Barbón
  • Mairenys Concepción-Hernández
  • Milady F. Mendoza-Rodríguez
  • Sinesio Torres-García
Original Article
  • 13 Downloads

Abstract

Tissue culture systems have contributed to the massive propagation of bamboos. However, micro-propagated plants show a low percentage of rooting and ex vitro survival due to anatomical and physiological anomalies induced by in vitro factors. This study aims to determine the effect of sucrose on physiological and biochemical changes in Bambusa vulgaris Schrad. Ex Wendl shoots cultured in a temporary immersion system and in plantlets growing under greenhouse conditions. For this purpose, two concentrations of sucrose (20 and 30 g L−1) and a control treatment (sucrose-free medium) were used in a rooting culture medium. Our data revealed that the absence of sucrose in the culture medium improved the morpho-physiological, biochemical and anatomical development of the shoots. However, a high sucrose concentration decreased the total chlorophyll content and leaf area in shoots. Additionally, the hydrogen peroxide content and malondialdehyde increased in shoots cultured with 30 g L−1 of sucrose. On the other hand, scanning electron microscopy revealed that leaves of shoots which grow on medium containing 30 g L−1 sucrose displayed anatomical changes in the stomata of plants, whereas those from sucrose-free medium exhibited normal structural development. Finally, shoots cultured without sucrose showed a high survival rate and allowed a better adaptation of plantlets in the greenhouse. The temporary immersion systems combined with culture medium without sucrose offer new prospects for improving the physiology and biochemistry of plantlets during in vitro to ex vitro transition.

Keyword

Bamboo In vitro propagation Liquid medium Oxidative stress Scanning electron microscopy 

Notes

Acknowledgements

This research was supported by the International project EDUNABIO—Educational Network in Agrobiodiversity. We would like to express particular thanks to EDUNABIO for financial support and a scholarship, for developing this research.

Author contributions

This statement is to certify that all authors have seen and approved the manuscript being submitted. The presented idea was conceived by YG-R with support from STG and MM-R. All authors discussed the results and contributed to the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.

References

  1. Arencibia AD, Bernal A, Yang L, Cortegaza L, Carmona ER, Perez A, Santana I (2008) New role of phenylpropanoid compounds during sugarcane micropropagation in Temporary Immersion Bioreactors (TIBs). Plant Sci 175(4):487–496.  https://doi.org/10.1016/j.plantsci.2008.05.024 CrossRefGoogle Scholar
  2. Arencibia AD, Gómez A, Poblete M, Vergara C (2017) High-performance micropropagation of dendroenergetic poplar hybrids in photomixotrophic Temporary Immersion Bioreactors (TIBs). Ind Crops Prod 96:102–109.  https://doi.org/10.1016/j.indcrop.2016.11.065 CrossRefGoogle Scholar
  3. Badr A, Angers P, Desjardins Y (2011) Metabolic profiling of photoautotrophic and photomixotrophic potato plantlets (Solanum tuberosum) provides new insights into acclimatization. Plant Cell Tissue Organ Cult 107(1):13–24.  https://doi.org/10.1007/s11240-011-9951-5 CrossRefGoogle Scholar
  4. Baque MA, Elgirban A, Lee EJ, Paek KY (2012) Sucrose regulated enhanced induction of anthraquinone, phenolics, flavonoids biosynthesis and activities of antioxidant enzymes in adventitious root suspension cultures of Morinda citrifolia (L.). Acta Physiol Plant 34(2):405–415.  https://doi.org/10.1007/s11738-011-0837-2 CrossRefGoogle Scholar
  5. Barrales-López A, Robledo-Paz A, Trejo C, Espitia-Rangel E, Rodríguez-De La OJ (2015) Improved in vitro rooting and acclimatization of Capsicum chinense Jacq. plantlets. In Vitro Cell Dev Biol 51(3):274–283.  https://doi.org/10.1007/s11627-015-9671-3 CrossRefGoogle Scholar
  6. Bernal A, Machado P, Cortegaza L, Carmona ER, Rivero O, Zayas CM, Arencibia AD (2008) Priming and biopriming integrated into the sugarcane micropropagation technology by Temporary Immersion Bioreactors (TIBS). Sugar Tech 10(1):42–47.  https://doi.org/10.1007/s11627-007-9071-4 CrossRefGoogle Scholar
  7. Berthouly M, Etienne H (2005) Temporary immersion system: a new concept for use liquid medium in mass propagation. In: Hvoslef-Eide AK, Preil W (eds) Liquid culture systems for in vitro plant propagation. Springer, Dordrecht, pp 165–195CrossRefGoogle Scholar
  8. Catasús L (2003) Estudio de los Bambúes arborescentes cultivados en Cuba. Asociación Cubana de Trabajadores Agropecuarios y ForestalesGoogle Scholar
  9. Cha-um S, Chanseetis C, Chintakovid W, Pichakum A, Supaibul watana K (2011) Promoting root induction and growth of in vitro macadamia (Macadamia tetraphylla L. ‘Keaau’) plantlets using CO2-enriched photoautotrophic conditions. Plant Cell Tissue Organ Cult 106:435–444.  https://doi.org/10.1007/s11240-011-9940-8 CrossRefGoogle Scholar
  10. Chen J, Shafi M, Li S, Wang Y, Wu J, Ye Z, Liu D (2015) Copper induced oxidative stresses, antioxidant responses and phytoremediation potential of Moso bamboo (Phyllostachys pubescens). Sci Rep 46(5):444–449.  https://doi.org/10.1134/S1067413615050070 Google Scholar
  11. Cordero-Miranda EM (2010) Propuesta para el manejo sostenible de Bambusa vulgaris Schrader ex Wendland con objetivo protector en diferentes condiciones ecológicas del río Cuyaguateje, Pinar del Río. Tesis en opción al grado científico de doctor en Ciencias Ecológicas, Universidad de Pinar del Río, Pinar del Río, pp 7–10Google Scholar
  12. Cui X, Murthy H, Wu C, Paek K (2010) Sucrose-induced osmotic stress affects biomass, metabolite, and antioxidant levels in root suspension cultures of Hypericum perforatum L. Plant Cell Tissue Organ Cult 103(1):7–14.  https://doi.org/10.1007/s11240-010-9747-z CrossRefGoogle Scholar
  13. Dar M, Naikoo M, Khan FA, Rehman F, Green I, Naushin F, Ansari A (2017) An introduction to reactive oxygen species metabolism under changing climate in plants. In: Khan M, Khan N (eds) Reactive oxygen species and antioxidant systems in plants: role and regulation under abiotic stress. Springer, Singapore, pp 25–52.  https://doi.org/10.1007/978-981-10-5254-5_2 Google Scholar
  14. Duyen NT, Van TT, Le Minh NT, Quynh NT (2017) Effects of micro-environmental factors on the photoautotrophic growth of Hibiscus sagittifolius Kurz cultured in vitro. Tap Chi Sinh Hoc 39(4):496–506.  https://doi.org/10.15625/0866-7160/v39n4.11030 CrossRefGoogle Scholar
  15. Fazal H, Abbasi B, Ahmad N, Ali M, Ali S (2016) Sucrose induced osmotic stress and photoperiod regimes enhanced the biomass and production of antioxidant secondary metabolites in shake-flask suspension cultures of Prunella vulgaris L. Plant Cell Tissue Organ Cult 124(3):573–581.  https://doi.org/10.1007/s11240-015-0915-z CrossRefGoogle Scholar
  16. Gantait S, Pramanik BR, Banerjee M (2018) Optimization of planting materials for large scale plantation of Bambusa balcooa Roxb. Influence of propagation methods. J Saudi Soc Agric Sci 17(1):79–87.  https://doi.org/10.1016/j.jssas.2015.11.008 Google Scholar
  17. García-Ramírez Y, Gonzáles MG, Mendoza EQ, Seijo MF, Cárdenas ML, Moreno-Bermúdez L, Ribalta OH (2014) Effect of BA treatments on morphology and physiology of proliferated shoots of Bambusa vulgaris Schrad. Ex Wendl in temporary immersion. Am J Plant Sci 5(02):205–211.  https://doi.org/10.4236/ajps.2014.52027 CrossRefGoogle Scholar
  18. García-Ramírez Y, González-González M, García S, Freire-Seijo M, Pérez M, Trujillo Á, Barbon R (2016) Efecto de la densidad de inóculo sobre la morfología y fisiología de los brotes de Bambusa vulgaris Schrad. ex Wendl cultivados en Sistema de Inmersión Temporal. Biotecnol Veg 16(4):231–237Google Scholar
  19. Guerreiro C, Rúgolo de Agrasar Z (2013) Two new species of Chusquea (Poaceae, Bambuseae) from northwestern Argentina. Syst Bot 38(2):390–397.  https://doi.org/10.1600/036364413X666778 CrossRefGoogle Scholar
  20. Guo R, Yuan G, Wang Q (2011) Effect of sucrose and mannitol on the accumulation of health-promoting compounds and the activity of metabolic enzymes in broccoli sprouts. Sci Hortic 128(3):159–165.  https://doi.org/10.1016/j.scienta.2011.01.014 CrossRefGoogle Scholar
  21. Hassankhah A, Vahdati K, Lotfi M, Mirmasoumi M, Preece J, Assareh MH (2014) Effects of ventilation and sucrose concentrations on the growth and plantlet anatomy of micropropagated Persian Walnut plants. Int J Hortic Sci Technol 1(2):111–120.  https://doi.org/10.22059/ijhst.2014.52781 Google Scholar
  22. Hoang NN, Kitaya Y, Morishita T, Endo R, Shibuya T (2017) A comparative study on growth and morphology of wasabi plantlets under the influence of the micro-environment in shoot and root zones during photoautotrophic and photomixotrophic micropropagation. Plant Cell Tissue Organ Cult 130(2):255–263.  https://doi.org/10.1007/s11240-017-1219-2 CrossRefGoogle Scholar
  23. Iarema L, da Cruz A, Saldanha C, Dias L, Vieira R, de Oliveira E, Otoni W (2012) Photoautotrophic propagation of Brazilian ginseng [Pfaffia glomerata (Spreng.) Pedersen]. Plant Cell Tissue Organ Cult 110(2):227–238.  https://doi.org/10.1007/s11240-012-0145-6 CrossRefGoogle Scholar
  24. Keunen E, Peshev D, Vangronsveld J, Van Den Ende W, Cuypers A (2013) Plant sugars are crucial players in the oxidative challenge during abiotic stress: extending the traditional concept. Plant Cell Environ 36(7):1242–1255.  https://doi.org/10.1111/pce.12061 CrossRefGoogle Scholar
  25. Khalil M, El Aal A, Samy M (2016) Growth improvement of potato plants produced from tissue culture. Middle East J Agric Res 5(4):666–671Google Scholar
  26. Khan PS, Kozai T, Nguyen QT, Kubota C, Dhawan V (2003) Growth and water relations of Paulownia fortunei under photomixotrophic and photoautotrophic conditions. Biol Plant 46(2):161–166.  https://doi.org/10.1023/A:1022844720795 CrossRefGoogle Scholar
  27. Kozai T (2010) Photoautotrophic micropropagation-environmental control for promoting photosynthesis. Propag Ornam Plants 10(4):188–204Google Scholar
  28. Kozai T, Kubota C (2005) Concepts, definitions, ventilation methods, advantages and disadvantages. In: Kozai T, Afreen F, Zobayed SMA (eds) Photoautotrophic (sugar-free medium) micropropagation as a new propagation and transplant production system. Springer, Dordrecht, pp 19–30CrossRefGoogle Scholar
  29. Kozai T, Afreen F, Zobayed SMA (2005) Photoautotrophic (sugarfree medium) micropropagation as a new propagation and transplant production system. Springer, Dordrecht, p 315CrossRefGoogle Scholar
  30. Lobo AK, de Oliveira Martins M, Neto MC, Machado EC, Ribeiro RV, Silveira JA (2015) Exogenous sucrose supply changes sugar metabolism and reduces photosynthesis of sugarcane through the down-regulation of Rubisco abundance and activity. J Plant Physiol 179:113–121.  https://doi.org/10.1016/j.jplph.2015.03.007 CrossRefGoogle Scholar
  31. Malik B, Pirzadah T, Tahir I, Rehman RU, Hakeem KR, Abdin M (2014) Plant signaling: response to reactive oxygen species plant signaling: understanding the molecular crosstalk. Springer, New Delhi, pp 1–38CrossRefGoogle Scholar
  32. Martins JPR, Verdoodt V, Pasqual M, De Proft M (2015) Impacts of photoautotrophic and photomixotrophic conditions on in vitro propagated Billbergia zebrina (Bromeliaceae). Plant Cell Tissue Organ Cult 123(1):121–132.  https://doi.org/10.1007/s11240-015-0820-5 CrossRefGoogle Scholar
  33. Martins JP, Verdoodt V, Pasqual M, De Proft M (2016) Physiological responses by Billbergia zebrina (Bromeliaceae) when grown under controlled microenvironmental conditions. Afr J Biotechnol 15(36):1952–1961.  https://doi.org/10.5897/AJB2016.15584 CrossRefGoogle Scholar
  34. Mittler R (2017) ROS are good. Trends Plant Sci 22(1):11–19.  https://doi.org/10.1016/j.tplants.2016.08.002 CrossRefGoogle Scholar
  35. Mohamed MH, Alsadon AA (2010) Influence of ventilation and sucrose on growth and leaf anatomy of micropropagated potato plantlets. Sci Hortic 123(3):295–300.  https://doi.org/10.1016/j.scienta.2009.09.014 CrossRefGoogle Scholar
  36. Moreno-Bermúdez LJ, Kosky RG, Reyes M, Mbabazi C, Chong-Pérez B (2014) Respuesta de plantas in vitro de banano cv. Grande naine’ (Musa AAA) al estrés hídrico inducido con polietilenglicol. Biotecnol Veg 14(1):21–27Google Scholar
  37. Mudoi KD, Saikia SP, Goswami A, Gogoi A, Bora D, Borthakur M (2013) Micropropagation of important bamboos: a review. Afr J Biotechnol.  https://doi.org/10.5897/AJB12.2122 Google Scholar
  38. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15(3):473–497.  https://doi.org/10.1111/j.1399-3054.1962.tb08052.x CrossRefGoogle Scholar
  39. Negi S, Sukumar P, Liu X, Cohen JD, Muday GK (2010) Genetic dissection of the role of ethylene in regulating auxin-dependent lateral and adventitious root formation in tomato. Plant J 61(1):3–15.  https://doi.org/10.1111/j.1365-313X.2009.04027.x CrossRefGoogle Scholar
  40. Nguyen QT, Kozai T (2005) Photoautotrophic micropropagation of woody species. In: Kozai T, Afreen F, Zobayed SMA (eds) Photoautotrophic (sugar-free medium) micropropagation as a new micropropagation and transplant production system. Springer, Dodrecht, pp 123–146CrossRefGoogle Scholar
  41. Pospóšilová J, Tichá I, Kadleček P, Haisel D, Plzáková Š (1999) Acclimatization of micropropagated plants to ex vitro conditions. Biol Plant 42(4):481–497CrossRefGoogle Scholar
  42. Quiala E, Cañal MJ, Meijón M, Rodríguez R, Chávez M, Valledor L, Barbón R (2012) Morphological and physiological responses of proliferating shoots of teak to temporary immersion and BA treatments. Plant Cell Tissue Organ Cult 109(2):223–234.  https://doi.org/10.1007/s11240-011-0088-3 CrossRefGoogle Scholar
  43. Rebelo C, Buckingham K (2015) Bamboo: the opportunities for forest and landscape restoration. Unasylva 66(245):91Google Scholar
  44. Regueira M, Rial E, Blanco B, Bogo B, Aldrey A, Correa B, Vidal N (2018) Micropropagation of axillary shoots of Salix viminalis using a temporary immersion system. Trees 32(1):61–71.  https://doi.org/10.1007/s00468-017-1611-x CrossRefGoogle Scholar
  45. Roels S, Noceda C, Escalona M, Sandoval J, Canal MJ, Rodriguez R, Debergh P (2006) The effect of headspace renewal in a temporary immersion bioreactor on plantain (Musa AAB) shoot proliferation and quality. Plant Cell Tissue Organ Cult 84(2):155–163.  https://doi.org/10.1007/s11240-005-9013-y CrossRefGoogle Scholar
  46. Ruzicka K, Ljung K, Vanneste S, Podhorska R, Beechman T, Friml J, Benkova E (2007) Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell 19(7):2197–2212.  https://doi.org/10.1105/tpc.107.052126 CrossRefGoogle Scholar
  47. Saini S, Sharma I, Kaur N, Pati PK (2013) Auxin: a master regulator in plant root development. Plant Cell Rep 32(6):741–757.  https://doi.org/10.1007/s00299-013-1430-5 CrossRefGoogle Scholar
  48. Sandhu M, Wani SH, Jiménez VM (2017) In vitro propagation of bamboo species through axillary shoot proliferation: a review. Plant Cell Tissue Organ Cult 132(1):27–53.  https://doi.org/10.1007/s11240-017-1325-1 CrossRefGoogle Scholar
  49. Sha Valli P, Kozai T, Nguyen Q, Kubota C, Dhawan V (2003) Growth and water relations of Paulownia fortunei under photomixotrophic and photoautotrophic conditions. Biol Plant 46(2):161–166CrossRefGoogle Scholar
  50. Shin KS, Park SY, Paek KY (2013) Sugar metabolism, photosynthesis, and growth of in vitro plantlets of Doritaenopsis under controlled microenvironmental conditions. In Vitro Cell Dev Biol 49(4):445–454.  https://doi.org/10.1007/s11627-013-9524-x CrossRefGoogle Scholar
  51. Shin KS, Park SY, Paek KY (2014) Physiological and biochemical changes during acclimatization in a Doritaenopsis hybrid cultivated in different microenvironments in vitro. Environ Exp Bot 100:26–33.  https://doi.org/10.1016/j.envexpbot.2013.12.004 CrossRefGoogle Scholar
  52. Singh S, Singh R, Kalia S, Dalal S, Dhawan AK, Kalia RK (2013) Limitations, progress and prospects of application of biotechnological tools in improvement of bamboo—a plant with extraordinary qualities. Physiol Mol Biol Plants 19(1):21–41.  https://doi.org/10.1007/s12298-012-0147-1 CrossRefGoogle Scholar
  53. Swarup R, Perry P, Hagenbeek D, Van Der Straeten D, Beemster GT, Sandberg G, Bhalerao R, Ljung K, Bennet MJ (2007) Ethlene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation. Plant Cell 19(7):2186–2196.  https://doi.org/10.1105/tpc.107.052100 CrossRefGoogle Scholar
  54. Tian J, Cheng Y, Kong X, Liu M, Jiang F, Wu Z (2017) Induction of reactive oxygen species and the potential role of NADPH oxidase in hyperhydricity of garlic plantlets in vitro. Protoplasma 254(1):379–388.  https://doi.org/10.1007/s00709-016-0957-z CrossRefGoogle Scholar
  55. Xiao Y, Niu G, Kozai T (2011) Development and application of photoautotrophic micropropagation plant system. Plant Cell Tissue Organ Cult 105:149–158.  https://doi.org/10.1007/s11240-010-9863-9 CrossRefGoogle Scholar
  56. Yaseen M, Ahmad T, Sablok G, Standardi A, Hafiz IA (2013) Role of carbon sources for in vitro plant growth and development. Mol Biol Rep 40(4):2837–2849.  https://doi.org/10.1007/s11033-012-2299-z CrossRefGoogle Scholar
  57. Zobayed SMA, Kubota C, Kozai T (1999) Development of a forced ventilation micropropagation system for large-scale photoautotrophic culture and its utilization in sweet potato. In Vitro Cell Dev Biol 34:350–355CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Yudith García-Ramírez
    • 1
    Email author
  • Gloria Patricia Barrera
    • 2
  • Marisol Freire-Seijo
    • 1
  • Raúl Barbón
    • 1
  • Mairenys Concepción-Hernández
    • 1
  • Milady F. Mendoza-Rodríguez
    • 1
  • Sinesio Torres-García
    • 3
  1. 1.Instituto de Biotecnología de las PlantasUniversidad Central “Marta Abreu” de Las VillasSanta ClaraCuba
  2. 2.Corporación Colombiana de Investigación AgropecuariaBogotáColombia
  3. 3.Facultad de Ciencias AgropecuariasUniversidad Central “Marta Abreu” de Las VillasSanta ClaraCuba

Personalised recommendations