Plant Cell, Tissue and Organ Culture (PCTOC)

, Volume 136, Issue 2, pp 373–382 | Cite as

Long-term preservation of Lotus tenuis adventitious buds

  • Fabiana D. Espasandin
  • Elsa A. Brugnoli
  • Paula G. Ayala
  • Lilian P. Ayala
  • Oscar A. Ruiz
  • Pedro A. SansberroEmail author
Original Article


Encapsulation-dehydration, encapsulation-vitrification, and vitrification were tested for cryopreservation of Lotus tenuis (Fagaceae) adventitious buds clusters (ABCs) obtained by a direct regeneration system from leaves cultures. Among them, the PVS3-based vitrification procedure was found to be useful for survival and regrowth of the preserved explants. For vitrification, the ABCs were dehydrated in a solution containing 2 M glycerol + 0.4 M sucrose for 25 min at room temperature, submerged in PVS3 solution for 1 h at 0 °C, then immersed in liquid nitrogen for 48 h and rapidly rewarmed. Afterword, the explants were unloaded in MS liquid medium with 1.2 M sucrose for 30 min. The washed tissues were dried superficially on filter paper and cultured in semisolid hormone-free MS medium containing 0.1 M sucrose. All cultures were maintained at 25 °C in the dark for 10 days and transferred to the light conditions. With this procedure, 79 ± 5.3% survival and more than 80% of the plantlets displaying a phenotype similar to the non-treated control after acclimatization. The data settled from ISSR showed no genetic dissimilarities between in vitro regenerants derived from cryopreserved tissues and the non-treated plants. Thus, our results indicate that the use of vitrification-based PVS3 solution offers a simple, accurate, and appropriate procedure for the cryopreservation of L. tenuis adventitious buds.


Cryopreservation PVS3 Vitrification ISSR markers 



This work was supported by grants from Agencia Nacional de Promoción Científica y Técnica (PICT 2014-3718) and Secretaría General de Ciencia y Técnica-Universidad Nacional del Nordeste (PI A001/14). We extend our sincere appreciation to anonymous reviewers for their critical comments. F. Espasandin, E. Brugnoli, O. Ruiz, and P. Sansberro are members of the Research Council of Argentina (CONICET). G. Ayala and L. Ayala received a scholarship from CONICET.

Author contributions

FDE, OAR, and PAS conceived and designed the experiments. FDE, EAB, PGA, and LPA performed the research. FDE and PAS wrote the manuscript. All authors read and approved the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Balzarini M, Di Rienzo J (2013) Info-Gen: software para análisis estadístico de datos genéticos. Facultad de Ciencia Agropecuarias, Universidad Nacional de Córdoba, Córdoba.
  2. Brugnoli E, Urbani M, Quarin C, Martínez E, Acuña C (2013) Diversity in diploid, tetraploid, and mixed diploid–tetraploid populations of Paspalum simplex. Crop Sci 53:1509–1516CrossRefGoogle Scholar
  3. Dumet D, Benson E (2000) The use of physical and biochemical studies to elucidate and reduce cryopreservation-induced damage in hydrated/desiccated plant germplasm. In: Engelmann F, Takagi H (eds) Cryopreservation of tropical plant germplasm. Current research progress and application. IPGRI, JIRCAS International Agriculture Roma, Rome, pp 43–56Google Scholar
  4. Escaray FJ, Menéndez AB, Gárriz A, Ruiz OA (2012) Ecological and agronomic importance of the plant genus Lotus. Its application in grassland sustainability and the amelioration of constrained and contaminated soils. Plant Sci 182:121–133CrossRefGoogle Scholar
  5. Espasandin F, Collavino M, Luna C, Tarragó J, Paz R, Ruiz OA, Mroginski L, Sansberro P (2010) Agrobacterium tumefaciens-mediated transformation of Lotus tenuis Mill. and regeneration of transgenic lines. Plant Cell Tissue Organ Cult 102:181–189CrossRefGoogle Scholar
  6. Espasandin F, Maiale S, Calzadilla P, Ruiz O, Sansberro P (2014) Transcriptional regulation of 9-cis-epoxycarotenoid dioxygenase (NCED) gene by putrescine accumulation positively modulates ABA synthesis and drought tolerance in Lotus tenuis plants. Plant Physiol Biochem 76:29–35CrossRefGoogle Scholar
  7. Espasandin F, Calzadilla P, Maiale S, Ruiz O, Sansberro P (2017) Overexpression of the arginine decarboxylase gene improves tolerance to salt stress in Lotus tenuis plants. J Plant Growth Regul 37:156–165CrossRefGoogle Scholar
  8. Fahy GM (1986) The relevance of cryoprotectant toxicity to cryobiology. Cryobiology 23:1–13CrossRefGoogle Scholar
  9. Ferraro G, Filip R, del Pero MA, Basualdo N, Mendoza R, García I (2010) Flavonoids of Lotus tenuis (Waldst. & Kit.) as markers of populations growing in soils of different saline and hydrologic conditions. J Braz Chem Soc 21:1739–1745CrossRefGoogle Scholar
  10. Ferreira J, Pedrosa-Harand A (2014) Lotus cytogenetics. In: Tabata S, Stougaard J (eds) The Lotus japonicus genome. Springer, Berlin, pp 9–20Google Scholar
  11. Ferreira Nogueira G, Pasqual M, Scherwinski–Pereira JE (2013) Survival of sugarcane shoot tips after cryopreservation by droplet-vitrification. Pesqui Agropecu Bras 48:1524–1527CrossRefGoogle Scholar
  12. González-Arnao MT, Engelmann F (2013) Consideraciones teóricas y prácticas para la crioconservación de germoplasma vegetal. In: Crioconservación de plantas en América Latina y el Caribe. Instituto Interamericano de Cooperación para la Agricultura, San José, pp 37–53Google Scholar
  13. Hirai D, Sakai A (1999) Cryopreservation of in vitro-grown axillary shoot-tip meristems of mint (Mentha spicata L.) by encapsulation vitrification. Plant Cell Rep 9:150–155CrossRefGoogle Scholar
  14. Kaczmarczyk A, Funnekotter B, Menon A, Phang PY, Al-Hanbali A, Bunn E, Mancera RL (2012) Current issues in plant cryopreservation. In: Katkov I (ed) Current frontiers in cryobiology. InTech, Shanghai, pp 418–438Google Scholar
  15. Karlsson JOM, Toner M (1996) Long-term storage of tissues by cryopreservation: critical issues. Biomaterials 17:243–256CrossRefGoogle Scholar
  16. Kim HH, Lee YG, Shin DJ, Ko HC, Gwag JG, Cho EG, Engelmann F (2009) Development of alternative plant vitrification solutions to be used in droplet-vitrification procedures. Acta Hortic 908:181–186Google Scholar
  17. Makowska Z, Keller J, Engelmann F (1999) Cryopreservation of apices isolated from garlic (Allium sativum L.) bulbils and cloves. CryoLetters 20:175–182Google Scholar
  18. Markovic Z, Chatelet P, Sylvestre I, Kontić JK, Engelmann F (2013) Cryopreservation of grapevine (Vitis vinifera L.) in vitro shoot tips. Cent Eur J Biol 8:993–1000Google Scholar
  19. Matsumoto T (2017) Cryopreservation of plant genetic resources: conventional and new methods. Rev Agric Sci 5:13–20Google Scholar
  20. Matsumoto T, Sakai A, Takahashi C, Yamada K (1995) Cryopreservation in vitro grown apical meristems of wasabi (Wasabi japonica) by encapsulation vitrification method. CryoLetters 16:189–206Google Scholar
  21. Montes L (1988) Lotus tenuis. Rev Argent Prod Anim 8:367–376Google Scholar
  22. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497CrossRefGoogle Scholar
  23. Nishizawa S, Sakai A, Amano Y, Matsuzawa T (1993) Cryopreservation of asparagus (Asparagus officinalis L.) embryogenic suspension cells and subsequent plant regeneration by vitrification. Plant Sci 91:67–73CrossRefGoogle Scholar
  24. Niwata E (1995) Cryopreservation of apical meristems of garlic (Allium sativum L.) and high subsequent plant regeneration. CryoLetters 16:102–107Google Scholar
  25. Ogawa Y, Sakurai N, Oikawa A, Kai K, Morishita Y, Mori K, Moriya K, Fujii F, Aoki K, Suzuki H, Ohta D, Saito K, Shibata D (2012) High-throughput cryopreservation of plant cell cultures for functional genomics. Plant Cell Physiol 53:943–952CrossRefGoogle Scholar
  26. Ruzic D, Vujovic T, Cerovic R (2013) Cryopreservation of cherry rootstock Gisela 5 (Prunus cerasus × Prunus canescens) shoot tips by droplet-vitrification technique. J Hortic Res 21:79–85CrossRefGoogle Scholar
  27. Sakai A, Engelmann F (2007) Vitrification, encapsulation–vitrification and droplet–vitrification: a review. CryoLetters 28:151–172Google Scholar
  28. Sakai A, Kobayashi S, Oiyama I (1990) Cryopreservation of nuclear cells of navel orange (Citrus sinensis Obs. var. Brasiliensis tanaka) by vitrification. Plant Cell Rep 9:30–33CrossRefGoogle Scholar
  29. Sakai A, Matsumoto T, Hirai D, Niino T (2000) Newly developed encapsulation-dehydration protocol for plant cryopreservation. Cryo Lett 21:53–62Google Scholar
  30. Sakai A, Hirai D, Niino T (2008) Development of PVS-based vitrification and encapsulation-vitrification protocols. In: Reed BM (ed) Plant cryopreservation: a practical guide. Springer, Berlin, pp 33–58CrossRefGoogle Scholar
  31. Stoffella SL, Posse G, Collantes MB (1998) Variabilidad feno y genotípica de poblaciones de Lotus tenuis que habitan suelos con distintos pH. Ecología Austral 8:57–63Google Scholar
  32. Volk GM, Walters Ch (2006) Plant vitrification solution 2 lowers water content and alters freezing behavior in shoot tips during cryoprotection. Cryobiology 52:48–61CrossRefGoogle Scholar
  33. Volk GM, Harris JL, Rotindo KE (2006) Survival of mint shoot tips after exposure to cryoprotectant solution components. Cryobiology 52:305–308CrossRefGoogle Scholar
  34. Volk GM, Bonnart R, Shepherd A, Yin Z, Lee R, Polek M, Krueger R (2017) Citrus cryopreservation: viability of diverse taxa and histological observations. Plant Cell Tissue Organ Cult 128:327–334CrossRefGoogle Scholar
  35. Watanawikkit P, Tantiwiwat S, Bunn E, Dixon KW, Chayanarit K (2012) Cryopreservation of in vitro-propagated protocorms of Caladenia for terrestrial orchid conservation in Western Australia. Bot J Linn Soc 170:277–282CrossRefGoogle Scholar
  36. Withers LA, Engelmann F (1998) In vitro conservation of plant genetic resources. In: Altman A (ed) Biotechnology in agriculture. Marcel Dekker, New York, 57–88Google Scholar
  37. Yamamoto T, Iketani H, Ieki H, Nishizawa Y, Notsuka K, Hibi T, Hayashi T, Matsuta N (2000) Transgenic grapevine plants expressing a rice chitinase with enhance resistance to fungal pathogens. Plant Cell Rep 19:639–646CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Instituto de Botánica del Nordeste (IBONE-CONICET), Facultad de Ciencias AgrariasUniversidad Nacional del NordesteCorrientesArgentina
  2. 2.Unidad de Biotecnología 1 IIB-INTECh (CONICET)ChascomúsArgentina
  3. 3.Instituto de Fisiología y Recursos Genéticos Vegetales (IFRGV) “Ing. Victorio S. Trippi” (CIAP-INTA)CórdobaArgentina

Personalised recommendations