Advertisement

Plant Cell, Tissue and Organ Culture (PCTOC)

, Volume 136, Issue 2, pp 339–352 | Cite as

Does somaclonal variation play advantageous role in conservation practice of endangered species?: comprehensive genetic studies of in vitro propagated plantlets of Viola stagnina Kit. (Violaceae)

  • Piotr ŻabickiEmail author
  • Elwira Sliwinska
  • Józef Mitka
  • Agnieszka Sutkowska
  • Monika Tuleja
  • Grzegorz Migdałek
  • Justyna Żabicka
  • Aneta Słomka
  • Monika Kwiatkowska
  • Elżbieta Kuta
Original Article
  • 229 Downloads

Abstract

In vitro regeneration of Viola stagnina Kit., endangered in most part of its European distribution range, was successfully obtained based on the newly developed protocol. Adventitious shoots via direct and indirect organogenesis were induced on leaf blade and petiole fragments on solidified Murashige and Skoog (MS) medium supplemented with 0.5 or 1 mg l−1 thidiazuron, respectively. Shoots were rooted on half-strength MS medium with 2% sucrose and 0.5 mg l−1 indole-3-acetic acid (IAA), and plantlets were successfully acclimatized. Sixty-five of the regenerated plants (72% of isolated shoots cultured on rooting medium) survived at the experimental plot conditions. Among recovered via organogenesis plants, individuals ‘true-to-type’ derived from initial plant G1 and also plants genetically distant from initial plants were detected by ISSR markers. In all groups of clones genetic indices (number of genotypes, polymorphic markers, gene diversity, total gene diversity, mean gene diversity) were lower than in natural populations. Regenerated plantlets had the same genome size estimated by flow cytometry as initial material and plants from natural populations. They developed chasmogamous flowers with highly viable pollen grains (over 90%), cleistogamous flowers, and set seeds from both flower types in the first and second seasons cultivated at experimental plots. This is the first report of a successfully developed micropropagation protocol of V. stagnina, and the first detailed genetic analysis of recovered plants with the use of ISSR markers and genome size measurements allowing to discuss the advantageous role of somaclonal variation in ex situ plant conservation with the use of in vitro micropropagation.

Keywords

In vitro organogenesis Plant regeneration Genome size Somaclonal variation ISSR markers Viola 

Notes

Acknowledgements

Authors would like to thank dr. Artur Pliszko from Institute of Botany, Jagiellonian University and Drs. Ryszard Marecki and Tomasz S. Olszewski from Gdansk University for their help in collecting of plant material. This work was funded in part by the Dean of the Faculty of Biology and Earth Sciences of Jagiellonian University (Project DS/MND/WBiNoZ/IB/25/2012 for P. Żabicki).

Author contributions

All Authors made substantial contributions to conception and design, acquisition of data, analysis and interpretation of data, participated in drafting the article or revising it critically. PŻ study conception and design, acquisition of data, analysis and interpretation of data, drafting of manuscript; EŚ performed and evaluated flow cytometric analyses and participated in writing the manuscript; JM conducted calculations of genetic indices; AS acquisition, analysis and interpretation of data; MT acquisition of data, participated in drafting the article; GM analysis and interpretation of data, participated in drafting the manuscript; JŻ analysis and interpretation of data, participated in revising the manuscript; AS acquisition of data, participated in revising the manuscript; MK participated in revising the manuscript and formatting it according to instructions for authors; EK contribution to interpretation of data, supervising experiments, critical revision of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11240_2018_1519_MOESM1_ESM.docx (33 kb)
Supplementary Figure 1 (DOCX 32 KB)
11240_2018_1519_MOESM2_ESM.docx (18 kb)
Supplementary Table 1 (DOCX 17 KB)
11240_2018_1519_MOESM3_ESM.docx (16 kb)
Supplementary Table 2 (DOCX 15 KB)

References

  1. Abdellatif KF, Hegazy AE, Aboshama HM, Emara HA, El-Shahed AA (2012) Morphological and molecular characterization of somaclonal variation in tissue culture-derived banana plants. J Genet Eng Biotechnol 10:47–53CrossRefGoogle Scholar
  2. Avila-Treviño JA, Muñoz-Alemán JM, Pérez-Molphe-Balch E, Rodríguez-Sahagún A, Morales-Domínguez JF (2017) In vitro propagation from bud and apex explants of Moringa oleifera and evaluation of the genetic stability with RAMP marker. S Afr J Bot 108:149–156CrossRefGoogle Scholar
  3. Bairu MW, Aremu AO, van Staden J (2011) Somaclonal variation in plants: causes and detection methods. Plant Growth Regul 63:147–173CrossRefGoogle Scholar
  4. Bandelt H, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16(1):37–48CrossRefGoogle Scholar
  5. Barow M (2006) Endopolyploidy in seed plants. BioEssays 28:271–281CrossRefGoogle Scholar
  6. Bayliss MW (1973) Origin of chromosome number variation in cultured plant cells. Nature 246:529–530CrossRefGoogle Scholar
  7. Bhattacharyya P, Kumar V, van Staden J (2017) Assessment of genetic stability amongst micropropagated Ansellia africana, a vulnerable medicinal orchid species of Africa using SCoT markers. S Afr J Bot 108:294–302CrossRefGoogle Scholar
  8. Bidwell SD, Pederick JW, Sommer-Knudsen J, Woodrow IE (2001) Micropropagation of the nickel hyperaccumulator, Hybanthus floribundus (Family Violaceae). Plant Cell Tissue Organ 67:89–92CrossRefGoogle Scholar
  9. Bonin A, Bellemain E, Bronken Eidesen P, Pompanon F, Brochmann C, Taberlet P (2004) How to track and assess genotyping errors in population genetics studies. Mol Ecol 13:3261–3273CrossRefGoogle Scholar
  10. Chalageri G, Babu UV (2012) In vitro plant regeneration via petiole callus of Viola patrinii and genetic fidelity assessment using RAPD markers. Turk J Bot 36:358–368Google Scholar
  11. Curtis TGF, McGough HN (1988) The Irish Red Data Book 1. Vascular plants. Wildlife Service Ireland, Stationary Office, DublinGoogle Scholar
  12. D’Amato FD, Bayliss MW (1985) Cytogenetics of plant cell and tissue cultures and their regenerates. Critical Rev Plant Sci 3:73–112CrossRefGoogle Scholar
  13. Dafni A, Firmage D (2000) Pollen viability and longevity: practical, ecological and evolutionary implications. In: Dafni A, Hesse M, Pacini E (eds) Pollen and pollination. Springer, Vienna, pp 113–132CrossRefGoogle Scholar
  14. Danihelka J, Niklfeld H, Šípošová H (2009) Viola elatior, V. pumila and V. stagnina in Austria, Czechia and Slovakia: a story of decline. Preslia 81:151–171Google Scholar
  15. Dhooghe E, van Laere K, Eeckhaut T, Leus L, van Huylenbroeck J (2011) Mitotic chromosome doubling of plant tissues in vitro. Plant Cell Tissue Organ Cult 104:359–373CrossRefGoogle Scholar
  16. Doležel J (1997) Application of flow cytometry for the study of plant genomes. J Appl Genet 38:285–302Google Scholar
  17. Doležel J, Sgorbati S, Lucretti S (1992) Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiol Plant 85:625–631CrossRefGoogle Scholar
  18. Eckstein RL, Otte A (2005) Effects of cleistogamy and pollen source on seed production and offspring performance in three endangered violets. Basic Appl Ecol 6(4):339–350CrossRefGoogle Scholar
  19. Eckstein RL, Hölzel N, Danihelka J (2006a) Biological flora of Central Europe: Viola elatior, V. pumila and V. stagnina. Perspect Plant Ecol 8:45–66CrossRefGoogle Scholar
  20. Eckstein RL, O’Neill RA, Danihelka J, Otte A, Köhler W (2006b) Genetic structure among and within peripheral and central populations of three endangered floodplain violets. Mol Ecol 15:2367–2379CrossRefGoogle Scholar
  21. Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50CrossRefGoogle Scholar
  22. Feráková V, Maglocký Š, Marhold K (2001) Red list of ferns and flowering plants of Slovakia. In: Baláž D, Marhold K, Urban P (eds) Červený zoznam rastlín a živočíchov Slovenska. Red list of plants and animals of Slovakia. Ochr Prír 20(suppl 160):44–77 (In Slovak)Google Scholar
  23. Gilissen LJW, van Staveren MJ, Hakkert JC, Smulders MJM, Verhoeven HA, Creemers-Molenaar J (1994) The competence of cells for cell division and regeneration in tobacco explants depends on cellular location, cell cycle phase and ploidy level. Plant Sci 103:81–91CrossRefGoogle Scholar
  24. Greilhuber J, Doležel J, Lysák MA, Bennett MD (2005) The origin, evolution and proposed stabilization of the terms ‘genome size’ and ‘C-value’ to describe nuclear DNA contents. Ann Bot 95(1):255–260CrossRefGoogle Scholar
  25. Grulich V (2012) Red List of vascular plants of the Czech Republic. Preslia 84(3):631–645Google Scholar
  26. Haque SM, Ghosh B (2013) Micropropagation, in vitro flowering and cytological studies of Bacopa chamaedryoides, an ethno-medicinal plant. Environ Exp Bot 11:59–68Google Scholar
  27. Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23(2):254–267CrossRefGoogle Scholar
  28. Karp A (1994) Origins, causes and uses of variation in plant tissue cultures. In: Vasil IK, Thorpe TA (eds) Plant cell and tissue culture. Kluwer Academic Publishers, Dordrecht, pp 139–152Google Scholar
  29. Kaźmierczakowa R, Zarzycki K, Mirek Z (2014) Polish Red Data book of plants. Pteridophytes and flowering plants. Instytut Ochrony Przyrody. Polska Akademia Nauk, CracowGoogle Scholar
  30. Kolano B, Siwinska D, Maluszynska J (2009) Endopolyploidy patterns during development of Chenopodium quinoa. Acta Biol Crac Ser Bot 51(2):85–92Google Scholar
  31. Korneck D, Schnittler M, Vollmer I (1996) Red List of vascular plants (Pteridophyta et Spermatophyta) Germany. Schr Reihe Veg Kd 28:21–187 (In German)Google Scholar
  32. Krishna H, Alizadeh M, Singh D, Singh U, Chauhan N, Eftekhari M, Sadh RK (2016) Somaclonal variations and their applications in horticultural crops improvement. 3 Biotech 6:54.  https://doi.org/10.1007/s13205-016-0389-7 CrossRefGoogle Scholar
  33. Kubaláková M, Doležel J, Lebeda A (1996) Ploidy instability of embryogenic cucumber (Cucumis sativus L.) callus culture. Biol Plant 38:475–480CrossRefGoogle Scholar
  34. Kuta E (1990) Biosystematic studies on the genus Viola L.; section Plagiostigma Godr. II. Embryological analysis of V. epipsila Ledeb. V. palustris L. and their hybrids from Poland. Acta Biol Crac Ser Bot 31:46–62Google Scholar
  35. Kuta E (1976) Viola L. In: Skalińska M, Jankun A, Wcisło H et al (eds) Further studies in chromosome numbers of polish angiosperms. Eleventh contribution. Acta Biol Crac Ser Bot 19:107–148Google Scholar
  36. Kuta E, Jedrzejczyk-Korycińsk M, Cieślak E, Rostański A, Szczepaniak M, Migdałek G, Wąsowicz P, Suda J, Combik M, Słomka A (2014) Morphological versus genetic diversity of Viola reichenbachiana and V. riviniana (sect. Viola, Violaceae) from soils differing in heavy metal content. Plant Biol 16(5):924–934CrossRefGoogle Scholar
  37. Larkin PJ, Scowcroft WR (1981) Somaclonal variation—a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214CrossRefGoogle Scholar
  38. Lee M, Phillips RL (1988) The chromosomal basis of somaclonal variation. Ann Rev Plant Physiol Plant Mol Biol 39:413–437CrossRefGoogle Scholar
  39. Leigh JW, Bryant D (2015) PopART: full-feature software for haplotype network construction. Methods Ecol Evol 6(9):1110–1116CrossRefGoogle Scholar
  40. Lemontey C, Mousset-Déclas C, Munier-Jolain N, Boutin JP (2000) Maternal genotype influences pea seed size by controlling both mitotic activity during early embryogenesis and final endoreduplication level/cotyledon cell size in mature seed. J Exp Bot 51:167–175CrossRefGoogle Scholar
  41. Leva AR, Petruccelli R, Rinaldi LMR (2012) Somaclonal variation in tissue culture: a case study with olive. In: Leva A (ed) Recent advances in plant in vitro culture. InTech, RijekaCrossRefGoogle Scholar
  42. Li JT, Deng DM, Peng GT, Deng JC, Zhang J, Liao B (2010) Successful micropropagation of the cadmium hyperaccumulator Viola baoshanensis (Violaceae). Int J Phytoremediat 12(8):761–771CrossRefGoogle Scholar
  43. Mallon R, Rodriguez-Oubina J, Gonzalez ML (2010) In vitro propagation of the endangered plant Centaurea ultreiae: assessment of genetic stability by cytological studies, flow cytometry and RAPD analysis. Plant Cell Tissue Organ Cult 101:31–39CrossRefGoogle Scholar
  44. Maluszynska J, Kolano B, Sas-Nowosielska H (2012) Endopolyploidy in plants. In: Leitch IJ, Greilhuber J, Doležel J, Wendel J (eds) Plant genome diversity, vol 2, Springer, Vienna, pp 99–119Google Scholar
  45. Marcussen T, Nordal I (1998) Viola suavis, a new species in the Nordic flora, with analyses of the relation to other species in the subsection Viola (Violaceae). Nord J Bot 18:221–237CrossRefGoogle Scholar
  46. Migdałek G (2015) Population genetic diversity and relationships between two closely related forest violets V. reichenbachiana Jordan ex Bor. and V. riviniana Rchb. (Violaceae) based on nuclear, plastid and AFLP markers. Dissertation, Jagiellonian UniversityGoogle Scholar
  47. Migdałek G, Kolczyk J, Pliszko A, Kościńska-Pająk M, Słomka A (2014) Reduced pollen viability and achene development in Solidago × niederederi Khek from Poland. Acta Soc Bot Pol 83(3):251–255CrossRefGoogle Scholar
  48. Mokhtari A, Otroshy M, Barekat T (2015) Plant regeneration through callus induction on medicinal herb Viola odorata—role of plant growth regulator and explants. Agric For 61(3):161–170Google Scholar
  49. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  50. Naeem M, Naveed I, Naqvi SMS, Mahmood T (2013) Standardization of tissue culture conditions and estimation of free scavenging activity in Viola odorata L. Pak J Bot 45:197–202Google Scholar
  51. Neelakandan AK, Wang K (2012) Recent progress in the understanding of tissue culture-induced genome level changes in plants and potential applications. Plant Cell Rep 31:597–620CrossRefGoogle Scholar
  52. Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci 70(12):3321–3323CrossRefGoogle Scholar
  53. Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci 76(10):5269–5273CrossRefGoogle Scholar
  54. Niklfeld H, Schratt-Ehrendorfer L (1999) Red List of endangered ferns and flowering plants (Pteridophyta and Spermatophyta) In: Niklfeld H (ed) Rote Listen gefährdeter Pflanzen Österreichs. Red Lists of threatened plants in Austria, 2nd edn. Bundesministerium für Umwelt, Jugend und Familie, Wien, pp 33–130Google Scholar
  55. Nybom H, Weising K, Rotter B (2014) DNA fingerprinting in botany: past, present, future. Investig Genet 5:1CrossRefGoogle Scholar
  56. Ochatt SJ, Patat-Ochatt EM, Moessner A (2011) Ploidy level determination within the context of in vitro breeding. Plant Cell Tissue Organ Cult 104:329–341CrossRefGoogle Scholar
  57. Otto F (1990) DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA. Methods Cell Biol 33:105–110CrossRefGoogle Scholar
  58. Phillips RL, Kaeppler SM, Olhoft P (1996) Genetic instability of plant tissue cultures: breakdown of normal controls. Proc Natl Acad Sci USA 91:5222–5226CrossRefGoogle Scholar
  59. Pontaroli AC, Camadro EL (2005) Somaclonal variation in Asparagus officinalis plants regenerated by organogenesis from long-term callus cultures. Genet Mol Biol 28:423–430CrossRefGoogle Scholar
  60. Popielarska-Konieczna M, Kozieradzka-Kiszkurno M, Świerczyńska J, Góralski G, Ślesak H, Bohdanowicz J (2008) Ultrastructure and histochemical analysis of extracellular matrix surface network in kiwifruit endosperm-derived callus culture. Plant Cell Rep 27(7):1137–1145CrossRefGoogle Scholar
  61. Popielarska-Konieczna M, Kozieradzka-Kiszkurno M, Tuleja M, Ślesak H, Kapusta P, Marcińska I, Bohdanowicz J (2013) Genotype-dependent efficiency of endosperm development in culture of selected cereals: histological and ultrastructural studies. Protoplasma 250:361–369.  https://doi.org/10.1007/s00709-012-0419-1 CrossRefGoogle Scholar
  62. Prakash E, Sha Valli Khan PS, Sairam Reddy P, Rao KR (1999) Regeneration of plants from seed-derived callus of Hybanthus enneaspermus L. Muell., a rare ethnobotanical herb. Plant Cell Rep 18:873–878CrossRefGoogle Scholar
  63. Rodriguez-Enriquez J, Dickinson HG, Grant-Downton RT (2011) MicroRNA misregulation: an overlooked factor generating somaclonal variation? Trends Plant Sci 16:242–248CrossRefGoogle Scholar
  64. Sato T, Kwon OC, Miyake H, Taniguchi T, Maeda E (1995) Regeneration of plantlets from petiole callus of wild viola (Viola patrinii DC.). Plant Cell Rep 14:768–772CrossRefGoogle Scholar
  65. Schlüter PM, Harris SA (2006) Analysis of multilocus fingerprinting data sets containing missing data. Mol Ecol Notes 6(2):569–572CrossRefGoogle Scholar
  66. Sebastiani MS, Ficcadenti N (2016) In vitro plant regeneration from cotyledonary explants of Cucumis melo L. var. cantalupensis and genetic stability evaluation using RAPD analysis. Plant Cell Tissue Organ 124:69–79CrossRefGoogle Scholar
  67. Shan X, Li Y, Tan M, Zhao Q (2012) Tissue culture-induced alteration in cytosine methylation in new rice recombinant inbred lines. Afr J Biotechnol 11:4338–4344Google Scholar
  68. Singh RJ (2003) Plant Cytogenetics. 2nd ed. CRC Press, Boca RatonGoogle Scholar
  69. Slazak B, Sliwinska E, Saluga M, Ronikier M, Bujak J, Słomka A, Göransson U, Kuta E (2015a) Micropropagation of Viola uliginosa (Violaceae) for endangered species conservation and for somaclonal variation-enhanced cyclotide biosynthesis. Plant Cell Tissue Organ 120:179–190CrossRefGoogle Scholar
  70. Slazak B, Jacobsson E, Göransson U, Kuta E (2015b) Exogenous plant hormones and cyclotide expression in Viola uliginosa (Violaceae). Phytochemistry 117:527–536CrossRefGoogle Scholar
  71. Słomka A, Kawalec P, Kellner K, Jędrzejczyk-Korycińska M, Rostański A, Kuta E (2010) Was reduced pollen viability in Viola tricolor L. the result of heavy metal pollution or rather the tests applied? Acta Biol Crac Ser Bot 52(1):123–127Google Scholar
  72. Słomka A, Jedrzejczyk-Korycinska M, Rostanski A, Karcz J, Kawalec P, Kuta E (2012) Heavy metals in soil affect reproductive processes more than morphological characters in Viola tricolor. Environ Exp Bot 75:204–211CrossRefGoogle Scholar
  73. Soni M, Kaur R (2014) Rapid in vitro propagation, conservation and analysis of genetic stability of Viola pilosa. Physiol Mol Biol Plants 20(1):95–101CrossRefGoogle Scholar
  74. Stepansky A, Kovalski I, Perl-Treves R (1999) Intraspecific classification of melons (Cucumis melo L.) in view of their phenotypic and molecular variation. Plant Syst Evol 271:313–332CrossRefGoogle Scholar
  75. Thiem B, Sliwinska E (2003) Flow cytometric analysis of nuclear DNA content in cloudberry (Rubus chamaemorus L.) in vitro cultures. Plant Sci 164:129–134CrossRefGoogle Scholar
  76. Viehmannova I, Bortlova Z, Vitamvas J, Hlasna Cepkova P, Eliasova K, Svobodova E, Travnickova M (2014) Assessment of somaclonal variation in somatic embryo-derived plants of yacon Smallanthus sonchifolius (Poepp. and Endl.) H. Robinson using inter simple sequence repeat analysis and flow cytometry. Electron J Biotechnol 17(2):102–106CrossRefGoogle Scholar
  77. Vishwakarma U, Gurav A, Sharma P (2013) Regeneration of multiple shoots from petiole callus of Viola serpens Wall. Pharmacogn Res 5(2):86–92CrossRefGoogle Scholar
  78. Wang J, Bao MZ (2007) Plant regeneration of pansy (Viola wittrockiana) ‘Caidie’ via petiole-derived callus. Sci Hortic 111:266–270CrossRefGoogle Scholar
  79. Wang QM, Wang L (2012) An evolutionary view of plant tissue culture: somaclonal variation and selection. Plant Cell Rep 31(9):1535–1547CrossRefGoogle Scholar
  80. Wiggington MJ (1999) British Red Data books 1. Vascular plants. Joint Nature Conservation Committee, PeterboroughGoogle Scholar
  81. Wijowska M, Kuta E, Przywara L (1999) Autonomous endosperm induction by in vitro culture of unfertilized ovules of Viola odorata L. Sex Plant Reprod 12:164–170CrossRefGoogle Scholar
  82. Yeh FC, Yang RC, Boyle T (1999) PopGene version 1.31: Microsoft Window-based freeware for population genetic analysis. Centre for International Forestry Research, University of Alberta, Edmonton, pp 11–23Google Scholar
  83. Żabicki P, Kuta E, Tuleja M, Rataj K, Malec P (2013) Arabidopsis cyclin-dependent kinase gene Cdkg;2 is involved in organogenic responses induced in vitro. Acta Biol Crac Ser Bot 55(1):37–48Google Scholar
  84. Zarzycki K, Szeląg Z (2006) Red list of vascular plants in Poland. In: Mirek Z, Zarzycki K, Wojewoda W, Szeląg Z (eds) Red list of plants and fungi in Poland. Szafer Institute of Botany, Polish Academy of Sciences, Cracow, pp 11–20Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Piotr Żabicki
    • 1
    Email author
  • Elwira Sliwinska
    • 2
  • Józef Mitka
    • 3
  • Agnieszka Sutkowska
    • 4
  • Monika Tuleja
    • 1
  • Grzegorz Migdałek
    • 5
  • Justyna Żabicka
    • 1
  • Aneta Słomka
    • 1
  • Monika Kwiatkowska
    • 1
  • Elżbieta Kuta
    • 1
  1. 1.Department of Plant Cytology and Embryology, Institute of BotanyJagiellonian UniversityCracowPoland
  2. 2.Laboratory of Molecular Biology and Cytometry, Department of Agricultural BiotechnologyUTP University of Science and TechnologyBydgoszczPoland
  3. 3.Botanical GardenJagiellonian UniversityCracowPoland
  4. 4.Department of Plant Breeding and Seed ScienceUniversity of AgricultureCracowPoland
  5. 5.Institute of BiologyPedagogical University of CracowCracowPoland

Personalised recommendations