Advertisement

Isolation and functional identification of an apple MdCER1 gene

  • Chen-Hui Qi
  • Xian-Yan Zhao
  • Han Jiang
  • Peng-Fei Zheng
  • Hai-Tao Liu
  • Yuan-Yuan Li
  • Yu-Jin Hao
Review
  • 32 Downloads

Abstract

The outermost layer of the plant epidermis is covered by cuticular wax, which resists UV radiation, insects, and pathogens, and protects the plant from various environmental stressors. We cloned MdCER1 to further study the molecular regulatory pathway of cuticular wax in apple (Malus × domestica Borkh.). The results showed that MdCER1 is a homolog of Arabidopsis CER1, which is essential for wax synthesis. A subcellular localization study revealed that MdCER1 was localized on the endoplasmic reticulum. We examined the expression pattern of MdCER1 in different tissues and found that it was constitutively expressed in roots, stems, leaves, flowers, and fruits, with the highest expression in leaves. Ectopic expression of MdCER1 promoted the accumulation of cuticular wax by changing the permeability of the epidermis and the response to abscisic acid, as well as by improving drought resistance in Arabidopsis.

Keywords

Apple MdCER1 Cuticular wax Functional characterization 

Abbreviations

ACP

Acyl carrier protein

DHS

DROUGHT HYPERSENSITIVE

cer

Eceriferum

ECR

Trans-2-enoyl-CoA reductase

ER

Endoplasmic reticulum

FAR

Fatty acyl-coenzyme A reductase

LACS

Long-chain acyl-CoA synthetase

KCS

3-Ketoacyl coenzyme A synthase

Os-BDG

Os-BODYGUARD

qRT-PCR

Quantitative real-time PCR

VLCFA

Very long chain fatty acid

WIN1/SHN1

WAX INDUCER1/SHINE1

WSL4

Wax crystal-sparse leaf 4

SEM

Scanning electron microscopy

TB

Toluidine blue

EV

Empty vector

Notes

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (31772275) and the Natural Science Fund for Excellent Young Scholars of Shandong Province (ZR2018JL014).

Author contributions

Y-JH and Y-YL planned and designed the research. C-HQ, X-YZ, HJ and H-TL performed the experiments and analyzed the data. C-HQ, and Y-YL wrote the manuscript.

Compliance with ethical standards

Conflict of interest

All the authors have declared that this article would have no conflict of interest.

Research involving human participants and/or animals

All the authors have declared our research would not involve any human participants and/or animals.

References

  1. An JP, Li R, Qu FJ, You CX, Wang XF, Hao YJ (2017) Ectopic expression of an apple cytochrome P450 gene MdCYPM1 negatively regulates plant photomorphogenesis and stress response in Arabidopsis. Biochem Biophys Res Commun 483:1–9.  https://doi.org/10.1016/j.bbrc.2017.01.026 CrossRefPubMedGoogle Scholar
  2. Bernard A, Joubès J (2013) Arabidopsis cuticular waxes: advances in synthesis, export and regulation. Prog Lipid Res 52:110–129.  https://doi.org/10.1016/j.plipres.2012.10.002 CrossRefPubMedGoogle Scholar
  3. Borisjuk N, Hrmova M, Lopato S (2014) Transcriptional regulation of cuticle biosynthesis. Biotechnol Adv 32:526–540.  https://doi.org/10.1016/j.biotechadv.2014.01.005 CrossRefPubMedGoogle Scholar
  4. Bourdenx B, Bernard A, Domergue F, Pascal S, Léger A, Roby D, Pervent M, Vile D, Haslam RP, Napier JA, Lessire R, Joubes J (2011) Overexpression of Arabidopsis CER1 promotes wax VLC-alkane biosynthesis and influences plant response to biotic and abiotic stresses. Plant Physiol.  https://doi.org/10.1104/pp.111.17232 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743.  https://doi.org/10.1046/j.1365-313x.1998.00343.x CrossRefGoogle Scholar
  6. Go YS, Kim H, Kim HJ, Suh MC (2014) Arabidopsis cuticular wax biosynthesis is negatively regulated by the DEWAX gene encoding an AP2/ERF-type transcription factor. Plant Cell 26:1666–1680.  https://doi.org/10.1105/tpc.114.123307 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Haslam TM, Kunst L (2013) Extending the story of very-long-chain fatty acid elongation. Plant sci 210:93–107.  https://doi.org/10.1016/j.plantsci.2013.05.008 CrossRefPubMedGoogle Scholar
  8. Haslam TM, Mañas-Fernández A, Zhao L, Kunst L (2012) Arabidopsis ECERIFERUM2 is a component of the fatty acid elongation machinery required for fatty acid extension to exceptional lengths. Plant Physiol 160:1164–1174.  https://doi.org/10.1104/pp.112.201640 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Kader JC (1996) Lipid-transfer proteins in plants. Annu Rev Plant Biol 47:627–654.  https://doi.org/10.1146/annurev.arplant.47.1.627 CrossRefGoogle Scholar
  10. Koornneef M, Hanhart CJ, Thiel F (1989) A genetic and phenotypic description of eceriferum (cer) mutants in Arabidopsis thaliana. J Hered 80:118–122.  https://doi.org/10.1093/oxfordjournals.jhered.a110808 CrossRefGoogle Scholar
  11. Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V, Bates PD et al (2013) Acyl-lipid metabolism. Arabidopsis Book 11:e0161.  https://doi.org/10.1199/Tab.0161 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Liu S, Li M, Su L, Ge K, Li L, Li X, Liu X, Li L (2016) Negative feedback regulation of ABA biosynthesis in peanut (Arachis hypogaea): a transcription factor complex inhibits AhNCED1 expression during water stress. Sci Rep 6:37943.  https://doi.org/10.1038/srep37943 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Lü S, Song T, Kosma DK, Parsons EP, Rowland O, Jenks MA (2009) Arabidopsis CER8 encodes LONG-CHAIN ACYL-COA SYNTHETASE 1 (LACS1) that has overlapping functions with LACS2 in plant wax and cutin synthesis. Plant J 59:553–564.  https://doi.org/10.1111/j.1365-313X.2009.03892.x CrossRefPubMedPubMedCentralGoogle Scholar
  14. Lü S, Zhao H, Des Marais DL, Parsons EP, Wen X, Xu X, Bangarusamy DK, Wang G, Rowland O, Juenger T, Bressan RA, Jenks MA (2012) Arabidopsis ECERIFERUM9 involvement in cuticle formation and maintenance of plant water status. Plant Physiol 159:930–944.  https://doi.org/10.1104/pp.112.198697 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Oshima Y, Shikata M, Koyama T, Ohtsubo N, Mitsuda N, Ohme-Takagi M (2013) MIXTA-like transcription factors and WAX INDUCER1/SHINE1 coordinately regulate cuticle development in Arabidopsis and Torenia fournieri. Plant Cell 25:1609–1624.  https://doi.org/10.1105/tpc.113.110783 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Park CS, Go YS, Suh MC (2016) Cuticular wax biosynthesis is positively regulated by WRINKLED4, an AP2/ERF-type transcription factor, in Arabidopsis stems. Plant J 88:257–270.  https://doi.org/10.1111/tpj.13248 CrossRefPubMedGoogle Scholar
  17. Reicosky DA, Hanover JW (1978) Physiological effects of surface waxes I. Light reflectance for glaucous and nonglaucous Picea pungens. Plant Physiol 62:101–104.  https://doi.org/10.1104/pp.62.1.101 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Rowland O, Domergue F (2012) Plant fatty acyl reductases: enzymes generating fatty alcohols for protective layers with potential for industrial applications. Plant Sci 193:28–38.  https://doi.org/10.1016/j.plantsci.2012.05.002 CrossRefPubMedGoogle Scholar
  19. Rowland O, Zheng H, Hepworth SR, Lam P, Jetter R, Kunst L (2006) CER4 encodes an alcohol-forming fatty acyl-coenzyme A reductase involved in cuticular wax production in Arabidopsis. Plant Physiol 142:866–877.  https://doi.org/10.1104/pp.106.086785 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Samuels L, Kunst L, Jetter R (2008) Sealing plant surfaces: cuticular wax formation by epidermal cells. Annu Rev Plant Biol 59:683–707.  https://doi.org/10.1146/annurev.arplant.59.103006.093219 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Seo PJ, Park CM (2011) Cuticular wax biosynthesis as a way of inducing drought resistance. Plant Signal Behav 6:1043–1045.  https://doi.org/10.4161/psb.6.7.15606 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Seo PJ, Xiang F, Qiao M, Park JY, Lee YN, Kim S, Lee Y, Park WJ, Park CM (2009) The MYB96 transcription factor mediates abscisic acid signaling during drought stress response in Arabidopsis. Plant Physiol 151:275–289.  https://doi.org/10.1104/pp.109.144220 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Seo PJ, Lee SB, Suh MC, Park MJ, Go YS, Park CM (2011) The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis. Plant Cell 23:1138–1152.  https://doi.org/10.1105/tpc.111.083485 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Wang X, Guan Y, Zhang D, Dong X, Tian L, Qu LQ (2017) A β-ketoacyl-CoA synthase is involved in rice leaf cuticular wax synthesis and requires a CER2-LIKE protein as a cofactor. Plant Physiol 173:944–955.  https://doi.org/10.1104/pp.16.01527 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Wang Z, Tian X, Zhao Q, Liu Z, Li X, Ren Y, Tang J, Fang J, Xu Q, Bu Q (2018) The E3 ligase DROUGHT HYPERSENSITIVE negatively regulates cuticular wax biosynthesis by promoting the degradation of transcription factor ROC4 in rice. Plant Cell 30:228–244.  https://doi.org/10.1105/tpc.17.00823 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Yang X, Zhao H, Kosma DK, Tomasi P, Dyer JM, Li R, Liu X, Wang Z, Parsons EP, Jenks MA, Lu S (2017) The acyl desaturase CER17 is involved in producing wax unsaturated primary alcohols and cutin monomers. Plant Physiol.  https://doi.org/10.1104/pp.16.01956 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Yeats TH, Rose JKC (2013) The formation and function of plant cuticles. Plant Physiol 163:5–20.  https://doi.org/10.1104/pp.113.222737 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and TechnologyShandong Agricultural UniversityTai’anPeople’s Republic of China
  2. 2.State Key Laboratory of Crop Stress Biology for Arid Areas, College of HorticultureNorthwest A&F UniversityXianyangPeople’s Republic of China
  3. 3.Shandong Yihui Detection Technology Co. Ltd.Tai’anPeople’s Republic of China

Personalised recommendations