Plant Cell, Tissue and Organ Culture (PCTOC)

, Volume 136, Issue 1, pp 85–100 | Cite as

Creation of culture media for efficient duckweeds micropropagation (Wolffia arrhiza and Lemna minor) using artificial mathematical optimization models

  • Pavel Khvatkov
  • Mariya Chernobrovkina
  • Anna Okuneva
  • Sergey Dolgov
Original Article


Recently, computer technologies have provided the researchers with the new approaches for modeling and better understanding the role of the factors that are involved in plant growth in vitro. To develop new models for the optimization of growth conditions, it is reasonable to use plants with a high speed of vegetative in vitro reproduction, such as duckweed (Lemnaceae family). This article focuses on the trophic levels of the two types of duckweeds (Wolffia arrhiza and Lemna minor). Using the development of the optimal modeling of the biological processes we have obtained the prescriptions for individually-balanced culture medium that enable 3.0 higher yields of the total soluble protein from each of the populations for both types of Lemnaceae.


Duckweed Ion nutrients Lemna minor Micropropagation Model Wolffia arrhiza 



Gamborg medium


Doubling time


Fresh weight


Gorham medium


Hoagland & Arnon medium


Knop medium


Murashige & Skoog medium


Relative growth rate


Relative yield after 1 week


Schenk & Hildebrandt medium


Steinberg medium


Total soluble protein


Author contributions

The authors have made the following declarations regarding their contributions: Conceived and designed the experiments: PK. Performed the experiments: PK, MC, AO. Analyzed the data: PK, MC, SD. Contributed reagents/materials: SD. Contributed to the writing of the manuscript: PK, MC, SD.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11240_2018_1494_MOESM1_ESM.docx (16 kb)
Supplementary material 1—In addition, we present the stock solutions of the developed media (W3M, L4M). We recommend making the medium in the lab settings from 5x-water-based solutions and 4x dry components according to Table S1 (DOCX 15 KB)


  1. Akter M, Chowdhury SD, Akter Y, Khatun MA (2011) Effect of duckweed (Lemna minor) meal in the diet of laying en and their performance. Bangladesh Res Publ J 5:252–261Google Scholar
  2. Bailey NTJ (1967) The mathematical approach to biology and medicine. Wiley, London, pp 174–183Google Scholar
  3. Banerjee AK (2001) In vitro regeneration and genetic transformation studies in indian cultivars of cotton (Gossypium hirsutum L.). PhD thesis, University of Pune, plant tissue culture division national chemical laboratory, India. January 2001, p 183Google Scholar
  4. Blaydes DF (1966) Interaction of kinetin and varius inhibitors in the growth of soybean tissue. Physiol Plant 19:748–753CrossRefGoogle Scholar
  5. Boehm R, Kruse C, Veste D, Barth S, Schnabl H (2001) A transient transformation system for duckweed Wolffia columbiana using Agrobacterium-mediated gene transfer. J Appl Bot 75:107–111Google Scholar
  6. Bozorgmehr K, Sebastian MS (2014) Trade liberalization and tuberculosis incidence: a longitudinal multi-level analysis in 22 high burden countries between 1990 and 2010. Health Policy Plan 29(3):328–351CrossRefGoogle Scholar
  7. Bradford MM (1976) A Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  8. Branson RE, Everett K, Hester B, Vickers TB (2007) Biorector for growing biological materials supported on a liquid surface. USA Patent Publication US7176024B2Google Scholar
  9. Daniella H, Streatfieldb SJ, Wycoff K (2001) Medical molecular farming: production of antibodies, biopharmaceuticals and edible vaccines in plants. Trends Plant Sci J 6:219–226CrossRefGoogle Scholar
  10. De Groot MH (1970) Optimal statistical decisions. McGraw-Hill series in probability and statistics, New York, pp 45–347Google Scholar
  11. Dolgov SV, Chernobrovkina MA, Khvatkov PA (2013) Composition of medium for culturing duckweed plants (Wolffia arrhiza) in vitro. Russian Patent Publication RU2472338C1Google Scholar
  12. Firsov A, Tarasenko I, Mitiouchkina T, Ismailova N, Shaloiko L, Vainstein A, Dolgov S (2015) High-yeld expression of M2e peptide of avian influenza virus H5N1 in transgenic duckweed plants. Mol Biotechnol 57:653–661CrossRefGoogle Scholar
  13. Firsov A, Tarasenko I, Mitiouchkina T, Shaloiko L, Kozlov O, Vinokurov L, Rasskazova E, Murashev A, Vainstein A, Dolgov S (2018) Expression and immunogenicity of M2e peptide of avian influenza virus H5N1 fused to ricin toxin b chain produced in duckweed plants. Front Chem 6:22CrossRefGoogle Scholar
  14. Friedrich AS (2005) Transformation und fermentation von Wolffia spec. Dissertation, Untersuchungen zu Kultivierung. Vorgelegt. p 154Google Scholar
  15. Gago J, Martinez-Nunez L, Landin M, Gallego PP (2010) Artificial neural networks as an alternative to the traditional statistical methodology in plant research. J Plant Physiol 167:23–27CrossRefGoogle Scholar
  16. Gallego PP, Gago J, Landin M (2011) Artificial neural networks technology to model and predict plant biology process. In: Suzuki K (ed) Artificial neural networks—methodological advances and biomedical applications. In tech Open Access Publisher, Rijeka. pp 197–216Google Scholar
  17. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158CrossRefGoogle Scholar
  18. Gao JS, Wu FF, Shen ZL, Meng Y, Cai YP, Lin Y (2016) A putative molybdate transporter LjMOT1 is required for molybdenum transport in Lotus japonicas. Physiol Plant 158:331–340CrossRefGoogle Scholar
  19. Gasdaska JR, Spenser D, Dickey L (2003) Advantages of therapeutic protein production in the aquatic plant Lemna. Bio Process J 2:49–56Google Scholar
  20. Gorham PR (1950) Heterotrophic nutrition of seed plants with particular reference to Lemna minor L. Can J Res 28:356–381CrossRefGoogle Scholar
  21. Haberlandt G (1902) Kulturversuche mit isolierten Pflanzenzellen. Sitzungsber K Preuss Akad Wiss Wien. Math Naturwiss 111:69–92Google Scholar
  22. Hoagland DR, Arnon DI (1938) The water-culture method for growing plants without soil. Circular/University of California, College of Agriculture, Agricultural Experiment Station, Berkeley, pp 347–353Google Scholar
  23. Iantcheva A, Vlahova M, Gvetoslavova S, Evtimova M, Atanassov A (2005) Somatic embryogenesis of the model legume—Medicago truncatula and other diploid medics. Biotechnol Biotechnol Equip 19:41–47CrossRefGoogle Scholar
  24. Jamshidi S, Yadollahi A, Ahmadi H, Arab MM, Eftekhari M (2016) Predicting in vitro culture medium macro-nutrients composition for pear rootstocks using regression analysis and neural network models. Front Plant Sci 7(suppl 274):1–12Google Scholar
  25. Jimenez D, Perez-Uribe A, Satizabal H, Barreto M, Damme VP, Tomassini M (2008) A survey of neural network-based modeling in agroecology. In: Prasad B (ed) Soft computing applications in industry, STUDFUZZ, vol 226. Springer, Berlin, pp 247–269CrossRefGoogle Scholar
  26. Khvatkov PA, Chernobrovkina MA, Sinyov VV, Dolgov SV (2013) Study on conditions for Wolffia arrhiza (L.) Horkel ex Wimm submerged culturing in a modified bioreactor. Biotekhnologiya 6:51–56. (In Russian, with English Abstract)Google Scholar
  27. Khvatkov P, Chernobrovkina M, Okuneva A, Pushin A, Dolgov S (2015) Transformation of Wolffia arrhiza (L.) Horkel ex Wimm. Plant Cell Tiss Org Cult 123:299–307CrossRefGoogle Scholar
  28. Khvatkov P, Chernobrovkina M, Okuneva A, Dolgov S (2016) Composition of medium for cultivation of Lemnaceae family plants (Lemna minor) under in vitro conditions. Russian Patent Publication RU2578394C1Google Scholar
  29. Khvatkov P, Firsov A, Shvedova A, Shaloiko L, Kozlov O, Chernobrovkina M, Pushin A, Tarasenko I, Chaban I, Dolgov S (2018) Development of Wolffia arrhiza as a producer for recombinant human granulocyte colony-stimulating factor. Front Chem 6:304CrossRefGoogle Scholar
  30. Kjersem JB, Skovlund E, Ikdahl T, Guren T, Kersten C, Dalsgaard AM, Yilmaz MK, Fokstuen T, Tveit KM, Kure EH (2014) FCGR2A and FCGR3A polymorphisms and clinical outcome in metastatic colorectal cancer patients treated with first-line 5-fluorouracil/folinic acid and oxaliplatin +/- cetuximab. BMC Cancer 14:340CrossRefGoogle Scholar
  31. Knop W (1865) Quantitative Utersuchungen Über den Ernährungensprozeß der Pflanze. Landw Versuchssat 7:93Google Scholar
  32. Kuehdorf K, Appenroth KJ (2012) Influence of salinity and high temperature on turion formation in the duckweed Spirodela polyrhiza. Aquat Bot 97:69–72CrossRefGoogle Scholar
  33. Landolt E (1986) The family of Lemnaceae—a monographic study. Veroff Geobot Inst ETH Stiftung Rubel Zurich 1:417–435Google Scholar
  34. Landolt E, Kandeler R (1987) The family of Lemnaceae—a monographic study. Veroff Geobot Inst ETH, Stiftung Rubel, Zurich 2:65–69Google Scholar
  35. Leng RA (1999) Duckweed: a tiny aquatic plant with enormous potential for agriculture and environment. FAO, Rome (Italy). Animal Production and Health Div., University of Tropical Agriculture Foundation, Phnom Penh (Cambodia), p 108Google Scholar
  36. Leng RA, Stambolie JH, Bell R (1995) Duckweed—a potential high-protein feed resource for domestic animals and fish. Livest Res Rural Dev 7:36–51Google Scholar
  37. Li J, Jain M, Vunsh R, Vishnevetsky J, Hanania U, Flaishman M, Perl A, Edelman M (2004) Callus induction and regeneration in Spirodela and Lemna. Plant Cell Rep 22:457–464CrossRefGoogle Scholar
  38. Ma JKC, Drake PMW, Christou P (2003) The production of recombinant pharmaceutical proteins in plants. Nat Rev Genet 4:794–805CrossRefGoogle Scholar
  39. Mariza M, Beatriz AG, Maria JV, Carlos AO, Maria LC (2007) Plant regeneration from protoplasts of alfalfa (Medicago sativa) via somatic embryogenesis. Instituto de Zootecnia de Nova Odessa, Nova Odessa. pp 683–689Google Scholar
  40. Men BX, Ogle B, Preston TR (1995) Use of duckweed (Lemna spp.) as replacement for soya bean meal in a basal diet of broken rice for fattening ducks. Livest Res Rural Dev 7:3Google Scholar
  41. Mett V, Musiychuk K, Hong B, Horsey A, Ugulava N, Shoji Y, Patricia DLR, Palmer GA, Rabindran S, Streatfield SJ, Boyers A, Russell M, Mann A, Lambkin R, Oxford JS, Schild GC, Yusibov V (2008) A plant-produced influenza subunit vaccine protects ferrets against virus challenge. Influenza Other Respir Viruses J 2:33–40CrossRefGoogle Scholar
  42. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  43. Patnaik PR (1999) Applications of neural networks to recovery of biological products. Biotechnol Adv 17:477–488CrossRefGoogle Scholar
  44. Prasad A, Prakash O, Mehrotra S, Khan F, Mathur AK, Mathur A (2016) Artificial neural network-based model for the prediction of optimal growth and culture conditions for maximum biomass accumulation in multiple shoot cultures of Centella asiatica. Protoplasma. Google Scholar
  45. Rabe-Hesketh S, Skrondal A (2008) Multilevel and longitudinal modeling using Stata, 2nd edn. Stata Press, College StationGoogle Scholar
  46. Rival S, Wisniewski JP, Langlais A, Kaplan H, Freyssinet G, Vancanneyt G, Vunsh R, Perl A, Edelman M (2008) Spirodela (duckweed) as an alternative production system for pharmaceuticals: a case study, aprotinin. Transgenic Res 17:503–513CrossRefGoogle Scholar
  47. Roche J, Love J, Guo Q, Song J, Cao M, Fraser K, Huege J, Jones C, Novák O, Turnbull MH, Jameson PE (2016) Metabolic changes and associated cytokinin signals in response to nitrate assimilation in roots and shoots of Lolium perenne. Physiol Plant 156:497–511CrossRefGoogle Scholar
  48. Santarem ER, Trick HN, Essig JE, Finer JJ (1998) Sonication assisted Agrobactenum-mediated transformation of soybean immature cotyledons: optimization of transient expression. Plant Cell Rep 17:752–759CrossRefGoogle Scholar
  49. Schenk RU, Hildebrandt AC (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50:199–204CrossRefGoogle Scholar
  50. Steinberg R (1946) Mineral requirement of Lemna minor. Plant Physiol J 21:42–48CrossRefGoogle Scholar
  51. Stomp AM, Rajbhandary N (2000) Genetically engineered duckweed. US Patent Publication US6040498AGoogle Scholar
  52. Stomp AM, Lynn D, Gasdaska J (2005) Expression of biologically active polypeptides in duckweed. US Patent Publication US20050060776A1Google Scholar
  53. Wolff P (1992) Les lentilles d’eau de l’Alsace. Bull. Assoc. Amis Col de Saveme, 60e anniversaire 1932/1992, pp 25–33Google Scholar
  54. Yuan J, Xu K (2017) Effects of simulated microgravity on the performance of the duckweeds Lemna aequinoctialis and Wolffia globosa. Aquat Bot 137:65–71CrossRefGoogle Scholar
  55. Zanin L, Tomasi N, Rizzardo C, Gottardi S, Terzano R, Alfeld M, Janssens K, De Nobili M, Mimmo T, Cesco S (2015) Iron allocation in leaves of Fe-deficient cucumber plants fed with natural Fe complexes. Physiol Plant 154:82–94CrossRefGoogle Scholar
  56. Ziegler P, Adelmann K, Zimmer S, Schmidt C, Appenroth K-J (2015) Relative in vitro growth rates of duckweeds (Lemnaceae)—the most rapidly growing higher plants. Plant Biol 17(1):33–41CrossRefGoogle Scholar
  57. Zielinska A, Kepczynska E (2013) Neural modeling of plant tissue cultures: a review. Biotechnologia 94:253–268CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.All-Russia Research Institute of Agricultural BiotechnologyMoscowRussia
  2. 2.Nikita Botanical GardensYaltaRussia
  3. 3.Branch of Shemyakin and Ovchinnikov Institute of Bioorganic ChemistryPuschinoRussia

Personalised recommendations