Physiological and genetic diversity analysis of diploid and autotetraploid Platycodon grandiflorm A. De Candolle

  • Zeng-xu XiangEmail author
  • Hui-hui Liang
  • Xing-li Tang
  • Wei-hu Liu
Original Article


This study was carried out to investigate the DNA markers between diploid and colchicine-induced autotetraploid Platycodon grandiflorum A. De Candolle (P. grandiflorum A. DC) plants using sequence-related amplified polymorphism (SRAP) analysis, amplified fragment length polymorphism analysis (AFLP). Autotetraploid P. grandiflorum A. DC plants were induced using colchicine. In comparison with diploid plants, autotetraploid P. grandiflorum A. DC plants showed lower plant height, stomata density, and MDA content (p < 0.05); higher leaf length and width, stomata width and length, SOD and POD activity, soluble sugar and protein content, and total chlorophyll content (p < 0.05). Using SRAP and AFLP analysis, we identified 23 (11.16%) and 13 (2.73%) polymorphic bands in autotetraploid P. grandiflorum A. DC plants in comparison with diploid plants, respectively. SRAP and AFLP markers are related to diversities in morphology, biochemistry, and oxidative activity between diploid and autopolyploid P. grandiflorum plants.


Autopolyploid Platycodon grandiflorum A. De Candolle SRAP AFLP 



This study is supported by China agricultural research system (CARS-21).

Author contributions

XZ and LH participated in the design of the study. LH handled and collected the samples. TX and LW performed the statistical analysis. LW helped to interpret the results. XZ and LH drafted the manuscript. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

11240_2018_1541_MOESM1_ESM.docx (24 kb)
Supplementary material 1 (DOCX 23 KB)


  1. Ahmadi T, Jafarkhani Kermani M, Mashayekhi K, Hasanloo T, Shariatpanahi M (2013) Comparing plant morphology, fertility and secondary metabolites in Rosa hybrida cv iceberg and its chromosome-doubled progenies. Int Res J Appl Bas Sci 4:3840–3849Google Scholar
  2. Cao X, Fan G, Deng M, Zhao Z, Dong Y (2014a) Identification of genes related to Paulownia witches’ broom by AFLP and MSAP. Int J Mol Sci 15:14669–14683CrossRefGoogle Scholar
  3. Cao X, Fan G, Zhao Z, Deng M, Dong Y (2014b) Morphological changes of Paulownia seedlings infected phytoplasmas reveal the genes associated with witches’ broom through AFLP and MSAP. PLoS ONE 9:e112533CrossRefGoogle Scholar
  4. Chelaifa H, Monnier A, Ainouche M (2010) Transcriptomic changes following recent natural hybridization and allopolyploidy in the salt marsh species Spartina × townsendii and Spartina anglica (Poaceae). New Phytol 186:161–174CrossRefGoogle Scholar
  5. Da Silva EF, de Sousa SB, da Silva GF, Sousa NR, do Nascimento Filho FJ, Hanada RE (2016) TRAP and SRAP markers to find genetic variability in complex polyploid Paullinia cupana var. sorbilis. Plant Gene 6:43–47CrossRefGoogle Scholar
  6. Gao R, Wang H, Dong B et al (2016) Morphological, genome and gene expression changes in newly induced autopolyploid Chrysanthemum lavandulifolium (fisch. Ex trautv.) makino. Int J Mol Sci 17:1690CrossRefGoogle Scholar
  7. Godina FR, Torres VR, Valdés MHR, Bocardo LE, Tapia MAT, Osuna HTGa (2015) Histological and morphological study of autotetraploid and diploid plants of tomatillo. Rev Mex De Cienc Agric 2015: 2291–2299Google Scholar
  8. Lavania UC, Srivastava S, Lavania S, Basu S, Misra NK, Mukai Y (2012) Autopolyploidy differentially influences body size in plants, but facilitates enhanced accumulation of secondary metabolites, causing increased cytosine methylation. Plant J 71:539–549CrossRefGoogle Scholar
  9. Lee J-Y, Hwang W-I, Lim S-T (2004) Antioxidant and anticancer activities of organic extracts from Platycodon grandiflorum A. De Candolle roots. J Ethnopharmacol 93:409–415CrossRefGoogle Scholar
  10. Li H (2000) Experimental principium and technology for botanic physiology and biochemistry. Junior Education Press, BeijingGoogle Scholar
  11. Limera C, Wang K, Xu L et al (2016) Induction of autotetraploidy using colchicine and its identification in radish (Raphanus sativus L.). J Hortic Sci Biotechnol 91:63–70CrossRefGoogle Scholar
  12. Liu C, Yang X, Zhang H et al (2015) Genetic and epigenetic modifications to the BBAA component of common wheat during its evolutionary history at the hexaploid level. Plant Mol Biol 88:53–64CrossRefGoogle Scholar
  13. Madlung A (2013) Polyploidy and its effect on evolutionary success: old questions revisited with new tools. Heredity 110:99CrossRefGoogle Scholar
  14. Martelotto LG, Ortiz JPA, Stein J, Espinoz F, Quarin CL, Pessino SC (2007) Genome rearrangements derived from autopolyploidization in Paspalum sp. Plant Sci 172:970–977CrossRefGoogle Scholar
  15. Martin SL, Husband BC (2013) Adaptation of diploid and tetraploid Chamerion angustifolium to elevation but not local environment. Evolution 67:1780–1791CrossRefGoogle Scholar
  16. Mecchia M, Ochogaví A, Selva J, Laspina N, Felitti S (2007) Genome polymorphisms and gene differential expression in a ‘back-and-forth’ ploidy-altered series of weeping lovegrass. J Plant Physiol 164:1051–1061CrossRefGoogle Scholar
  17. Nyakudya E, Jeong JH, Lee NK, Jeong YS (2014) Platycosides from the roots of Platycodon grandiflorum and their health benefits. Prev Nutr Food Sci 19:59–68CrossRefGoogle Scholar
  18. Oustric J, Morillon R, Luro F et al (2017) Tetraploid Carrizo citrange rootstock (Citrus sinensis Osb. × Poncirus trifoliata L. Raf.) enhances natural chilling stress tolerance of common clementine (Citrus clementina Hort. ex Tan). J Plant Physiol 214:108–115CrossRefGoogle Scholar
  19. Pamidimarri DS, Mastan SG, Rahman H, Reddy MP (2010) Molecular characterization and genetic diversity analysis of Jatropha curcas L. in India using RAPD and AFLP analysis. Mol Biol Rep 37:2249–2257CrossRefGoogle Scholar
  20. Parisod C, Holderegger R, Brochmann C (2010) Evolutionary consequences of autopolyploidy. New Phytol 186:5–17CrossRefGoogle Scholar
  21. Renny-Byfield S, Wendel JF (2014) Doubling down on genomes: polyploidy and crop plants. Am J Bot 101:1711–1725CrossRefGoogle Scholar
  22. Robarts DW, Wolfe AD (2014) Sequence—related amplified polymorphism (SRAP) markers: a potential resource for studies in plant molecular biology1. Appl Plant Sci 2:1400017CrossRefGoogle Scholar
  23. Stebbins GL (1971) Chromosomal evolution in higher plants. Chromosom Evolut High Plants. Google Scholar
  24. Valdevite M, Bertoni BW, Contini SHT et al (2016) Accumulation of loganin by genotypes of Palicourea rigida and related differential gene expression as determined by cDNA-SRAP. Plant Cell Tissue Organ Cult 125:445–456CrossRefGoogle Scholar
  25. Yang C, Zhao L, Zhang H et al (2014a) Evolution of physiological responses to salt stress in hexaploid wheat. Proc Natl Acad Sci USA 111:11882–11887CrossRefGoogle Scholar
  26. Yang P-M, Huang Q-C, Qin G-Y, Zhao S-P, Zhou J-G (2014b) Different drought-stress responses in photosynthesis and reactive oxygen metabolism between autotetraploid and diploid rice. Photosynthetica 52:193–202CrossRefGoogle Scholar
  27. Yoon YD, Han SB, Kang JS et al (2003) Toll-like receptor 4-dependent activation of macrophages by polysaccharide isolated from the radix of Platycodon grandiflorum. Int Immunopharmacol 3:1873–1882CrossRefGoogle Scholar
  28. Youssef M, James AC, Rivera-Madrid R, Ortiz R, Escobedo-GraciaMedrano RM (2011) Musa genetic diversity revealed by SRAP and AFLP. Mol Biotechnol 47:189–199CrossRefGoogle Scholar
  29. Zappacosta DC, Ochogavía AC, Rodrigo JM et al (2014) Increased apomixis expression concurrent with genetic and epigenetic variation in a newly synthesized Eragrostis curvula polyploid. Sci Rep 4:4423CrossRefGoogle Scholar
  30. Zhu S, Liu T, Tang Q, Fu L, Tang Sh (2014) Evaluation of bamboo genetic diversity using morphological and SRAP analyses. Russ J Genet 50:267–273CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Zeng-xu Xiang
    • 1
    Email author
  • Hui-hui Liang
    • 1
  • Xing-li Tang
    • 1
  • Wei-hu Liu
    • 1
  1. 1.Institute of Chinese Medicinal MaterialsNanjing Agricultural UniversityNanjingChina

Personalised recommendations