Plant Cell, Tissue and Organ Culture (PCTOC)

, Volume 136, Issue 3, pp 467–478 | Cite as

Isolation of two novel promoters from ramie (Boehmeria nivea L. Gaudich) and its functional characterization in Arabidopsis thaliana

  • Pingan Guo
  • Yancheng Zheng
  • Jie Chen
  • Bo Wang
  • Lijun Liu
  • Enying Feng
  • Dingxiang PengEmail author
Original Article


The development of tissue-specific or inducible promoters is important for plant genetic engineering. In this study, we isolated two novel promoters (named BnGDSpro and BnSTMpro) from ramie and analyzed their functions in Arabidopsis. The results show that BnGDSpro and its 5′-truncated fragments drive GUS dominantly expressed in shoot meristem while BnSTMpro and its 5′-truncated fragments have apical meristem specificity in Arabidopsis seedlings and nodule specificity in the flowers and siliques. The − 1233 to − 914 region and − 425 to 0 region of BnSTMpro are responsible for apical root specificity and root-knot specificity, respectively. In particular, CuSO4 treatment reveals that both BnGDSpro and BnSTMpro are copper-inducible promoters. Our findings suggest that BnGDSpro and BnSTMpro and their truncated fragments have potential applications in plant genetic transformation.


Ramie Promoter Cis-acting element Abiotic stress 



This study was supported by National Natural Science Foundation of China (31671736).

Author contributions

DP and PG designed the research project. PG performed the research and wrote the paper. PG and YZ performed Arabidopsis genetic transformation and GUS fluorometric assays. PG and JC isolated the regions of the two promoters. PG and EF provided experimental materials for RNA extraction. BW and LL revised manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11240_2018_1528_MOESM1_ESM.pdf (293 kb)
Supplementary material 1 (PDF 293 KB)


  1. An X, Chen J, Zhang J, Liao Y, Dai L, Wang B, Liu L, Peng D (2015) Transcriptome profiling and identification of transcription factors in ramie (Boehmeria nivea L. Gaud) in response to PEG treatment, using illumina paired-end sequencing technology. Int J Mol Sci 16:3493–3511. CrossRefGoogle Scholar
  2. Arimura GI, Huber DPW, Bohlmann J (2004) Forest tent caterpillars (Malacosoma disstria) induce local and systemic diurnal emissions of terpenoid volatiles in hybrid poplar (Populus trichocarpa × deltoides): cDNA cloning, functional characterization, and patterns of gene expression of (−)-germacrene D synthase, PtdTPS1. Plant J 37:603–616. CrossRefGoogle Scholar
  3. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. CrossRefGoogle Scholar
  4. Cai M, Wei J, Li X, Xu C, Wang S (2007) A rice promoter containing both novel positive and negative cis-elements for regulation of green tissue-specific gene expression in transgenic plants. Plant Biotechnol J 5:664–674. CrossRefGoogle Scholar
  5. Chen J, Pei Z, Dai L, Wang B, Liu L, An X, Peng D (2014a) Transcriptome profiling using pyrosequencing shows genes associated with bast fiber development in ramie (Boehmeria nivea L.). BMC Genom 15:919–919. CrossRefGoogle Scholar
  6. Chen L, Jiang B, Wu C, Sun S, Hou W, Han T (2014b) GmPRP2 promoter drives root-preferential expression in transgenic Arabidopsis and soybean hairy roots. BMC Plant Biol 14:245–245. CrossRefGoogle Scholar
  7. Chen J, Dai L, Wang B, Liu L, Peng D (2015) Cloning of expansin genes in ramie (Boehmeria nivea L.) based on universal fast walking. Gene 569:27–33. CrossRefGoogle Scholar
  8. Christensen AH, Quail PH (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res 5:213–218. CrossRefGoogle Scholar
  9. Chung KJ, Hwang SK, Hahn BS, Kim KH, Kim JB, Kim YH, Yang JS, Ha SH (2008) Authentic seed-specific activity of the Perilla oleosin 19 gene promoter in transgenic Arabidopsis. Plant Cell Rep 27:29–37. CrossRefGoogle Scholar
  10. Corrado G, Karali M (2009) Inducible gene expression systems and plant biotechnology. Biotechnol Adv 27:733–743. CrossRefGoogle Scholar
  11. Di GE, Laffont C, Sciarra F, Iannelli MA, Frugier F, Frugis G (2017) KNAT3/4/5-like class 2 KNOX transcription factors are involved in Medicago truncatula symbiotic nodule organ development. New Phytol 213:822–837. CrossRefGoogle Scholar
  12. Gatz C (1996) Chemically inducible promoters in transgenic plants. Curr Opin Biotechnol 7:168–172. CrossRefGoogle Scholar
  13. Groot EP, Sinha N, Gleissberg S (2005) Expression patterns of STM-like KNOX and Histone H4 genes in shoot development of the dissected-leaved basal eudicot plants Chelidonium majus and Eschscholzia californica (Papaveraceae). Plant Mol Biol 58:317–331. CrossRefGoogle Scholar
  14. Guo P, Zheng Y, Peng D, Liu L, Dai L, Chen C, Wang B (2018) Identification and expression characterization of the phloem protein 2 (PP2) genes in ramie (Boehmeria nivea L. Gaudich). Scientific Reports 8:10734. CrossRefGoogle Scholar
  15. Hernandez-Garcia CM, Finer JJ (2014) Identification and validation of promoters and cis-acting regulatory elements. Plant Sci 217–218:109–119. CrossRefGoogle Scholar
  16. Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300. CrossRefGoogle Scholar
  17. Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G (2015) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31:1296–1297. CrossRefGoogle Scholar
  18. Huang C, Zhou J, Jie Y, Xing H, Zhong Y, She W, Wei G, Yu W, Ma Y (2016) A ramie (Boehmeria nivea) bZIP transcription factor BnbZIP3 positively regulates drought, salinity and heavy metal tolerance. Mol Breed 36:1–15. CrossRefGoogle Scholar
  19. Ivashikina N, Deeken R, Ache P, Kranz E, Pommerrenig B, Sauer N, Hedrich R (2003) Isolation of AtSUC2 promoter-GFP-marked companion cells for patch-clamp studies and expression profiling. Plant J 36:931–945. CrossRefGoogle Scholar
  20. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907. CrossRefGoogle Scholar
  21. Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2004) A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought-and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol 45:346–350. CrossRefGoogle Scholar
  22. Katoh K, Rozewicki J, Yamada KD (2017) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. Google Scholar
  23. Ko JH, Kim HT, Hwang I, Han KH (2012) Tissue-type-specific transcriptome analysis identifies developing xylem-specific promoters in poplar. Plant Biotechnol J 10:587–596. CrossRefGoogle Scholar
  24. Lee JT, Prasad VYang PT, Wu JF, Thd H, Charng YY, Chan MT (2003) Expression of Arabidopsis CBF1 regulated by an ABA/stress inducible promoter in transgenic tomato confers stress tolerance without affecting yield. Plant Cell Environment 26:1181–1190. CrossRefGoogle Scholar
  25. Li Y, Liu S, Yu Z, Liu Y, Wu P (2013) Isolation and characterization of two novel root-specific promoters in rice (Oryza sativa L.). Plant Sci 207:37–44. CrossRefGoogle Scholar
  26. Li F, Fan G, Wang K, Sun F, Yuan Y, Song G, Li Q, Ma Z, Lu C, Zou C (2014) Genome sequence of the cultivated cotton Gossypium arboreum. Nat Genet 46:567–572. CrossRefGoogle Scholar
  27. Li Y, Tu L, Ye Z, Wang M, Gao W, Zhang X (2015) A cotton fiber-preferential promoter, PGbEXPA2, is regulated by GA and ABA in Arabidopsis. Plant Cell Rep 34:1539–1549. CrossRefGoogle Scholar
  28. Liu YG, Chen Y (2007) High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences. Biotechniques 43:649–656. CrossRefGoogle Scholar
  29. Liu C, Zeng L, Zhu S, Wu L, Wang Y, Tang S, Wang H, Zheng X, Zhao J, Chen X (2018) Draft genome analysis provides insights into the fiber yield, crude protein biosynthesis, and vegetative growth of domesticated ramie (Boehmeria nivea L. Gaud). DNA Res 25:173–181. CrossRefGoogle Scholar
  30. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆CT method. Methods 25:402–408. CrossRefGoogle Scholar
  31. Lü S, Gu H, Yuan X, Wang X, Wu AM, Qu L, Liu JY (2007) The GUS reporter-aided analysis of the promoter activities of a rice metallothionein gene reveals different regulatory regions responsible for tissue-specific and inducible expression in transgenic Arabidopsis. Transgenic Res 16:177–191. CrossRefGoogle Scholar
  32. Luan MB, Jian JB, Chen P, Chen JH, Chen JH, Gao Q, Gao G, Zhou JH, Chen KM, Guang XM (2018) Draft genome sequence of ramie, Boehmeria nivea (L.) Gaudich. Mol Ecol Resour 18:639–645. CrossRefGoogle Scholar
  33. Lücker J, Bowen P, Bohlmann J (2004) Vitis vinifera terpenoid cyclases: functional identification of two sesquiterpene synthase cDNAs encoding (+)-valencene synthase and (−)-germacrene D synthase and expression of mono- and sesquiterpene synthases in grapevine flowers and berries. Phytochemistry 65:2649–2659. CrossRefGoogle Scholar
  34. Lv D, Zhang T, Deng S, Zhang Y (2016) Functional analysis of the Malus domestica MdHMGR2 gene promoter in transgenic Arabidopsis thaliana. Biol Plant 60:667–676. CrossRefGoogle Scholar
  35. Menda N, Bar E, Vainstein A, Weiss D, Guterman I, Shalit M, Dan P, Dafny-Yelin M, Shalev G, Davydov O (2002) Rose scent: genomics approach to discovering novel floral fragrance-related genes. Plant Cell 14:2325–2338. CrossRefGoogle Scholar
  36. Myrick KV, Gelbart WM (2002) Universal fast walking for direct and versatile determination of flanking sequence. Gene 284:125–131. CrossRefGoogle Scholar
  37. Nguyen VP, Cho JS, Lee JH, Kim MH, Choi YI, Park EJ, Kim WC, Hwang S, Han KH, Ko JH (2017) Identification and functional analysis of a promoter sequence for phloem tissue specific gene expression from Populus trichocarpa. J Plant Biol 60:129–136. CrossRefGoogle Scholar
  38. Ochman H, Gerber AS, Hartl DL (1988) Genetic applications of an inverse polymerase chain reaction. Genetics 120:621–623Google Scholar
  39. Odell JT, Nagy F, Chua N-H (1985) Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313:810–812. CrossRefGoogle Scholar
  40. Peremarti A, Twyman RM, Gómez-Galera S, Naqvi S, Farré G, Sabalza M, Miralpeix B, Dashevskaya S, Yuan D, Ramessar K (2010) Promoter diversity in multigene transformation. Plant Mol Biol 73:363–378. CrossRefGoogle Scholar
  41. Pino MT, Skinner JS, Park EJ, Jeknić Z, Hayes PM, Thomashow MF, Chen TH (2007) Use of a stress inducible promoter to drive ectopic AtCBF expression improves potato freezing tolerance while minimizing negative effects on tuber yield. Plant Biotechnol J 5:591–604. CrossRefGoogle Scholar
  42. Porto MS, Pinheiro MPN, Batista VGL, dos Santos RC, de Albuquerque Melo Filho P, de Lima LM (2014) Plant promoters: an approach of structure and function. Mol Biotechnol 56:38–49. CrossRefGoogle Scholar
  43. Prosser I, Altug IG, Phillips AL, König WA, Bouwmeester HJ, Beale MH (2004) Enantiospecific (+)- and (−)-germacrene D synthases, cloned from goldenrod, reveal a functionally active variant of the universal isoprenoid-biosynthesis aspartate-rich motif. Arch Biochem Biophys 432:136–144. CrossRefGoogle Scholar
  44. Saad RB, Romdhan WB, Zouari N, Azaza J, Mieulet D, Verdeil JL, Guiderdoni E, Hassairi A (2011) Promoter of the AlSAP gene from the halophyte grass Aeluropus littoralis directs developmental-regulated, stress-inducible, and organ-specific gene expression in transgenic tobacco. Transgenic Res 20:1003–1018. CrossRefGoogle Scholar
  45. Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J (2010) Genome sequence of the paleopolyploid soybean (Glycine max (L.) Merr.). Nature 463:178–183. CrossRefGoogle Scholar
  46. Scofield S, Dewitte W, Murray JA (2007) The KNOX gene SHOOT MERISTEMLESS is required for the development of reproductive meristematic tissues in Arabidopsis. Plant J 50:767–781. CrossRefGoogle Scholar
  47. Siebert PD, Chenchik A, Kellogg DE, Lukyanov KA, Lukyanov SA (1995) An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Res 23:1087–1088. CrossRefGoogle Scholar
  48. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. CrossRefGoogle Scholar
  49. Tanabe N, Tamoi M, Shigeoka S (2015) The sweet potato RbcS gene (IbRbcS1) promoter confers high-level and green tissue-specific expression of the GUS reporter gene in transgenic Arabidopsis. Gene 567:244–250. CrossRefGoogle Scholar
  50. Terauchi R, Kahl G (2000) Rapid isolation of promoter sequences by TAIL-PCR: the 5′-flanking regions of Pal and Pgi genes from yams (Dioscorea). Mol Gen Genet 263:554–560. CrossRefGoogle Scholar
  51. Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42:833–839. CrossRefGoogle Scholar
  52. Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic-and cold-stress-responsive promoters. Trends Plant Sci 10:88–94. CrossRefGoogle Scholar
  53. Yevtushenko DP, Sidorov VA, Romero R, Kay WW, Misra S (2004) Wound-inducible promoter from poplar is responsive to fungal infection in transgenic potato. Plant Sci 167:715–724. CrossRefGoogle Scholar
  54. Yin Y, Chen L, Beachy R (1997) Promoter elements required for phloem-specific gene expression from the RTBV promoter in rice. Plant J 12:1179–1188. CrossRefGoogle Scholar
  55. Zavallo D, Lopez Bilbao M, Esteban Hopp H, Heinz R (2010) Isolation and functional characterization of two novel seed-specific promoters from sunflower (Helianthus annuus L.). Plant Cell Rep 29:239–248. CrossRefGoogle Scholar
  56. Zhang X, Henriques R, Lin SS, Niu QW, Chua NH (2006) Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc 1:641–646. CrossRefGoogle Scholar
  57. Zhao Y, Wang Y, Liu Q, Zhai Y, Zhao Y, Zhang M, Sha W (2017) Cloning of a new LEA1 gene promoter from soybean and functional analysis in transgenic tobacco. Plant Cell Tissue Organ Cult 130:379–391. CrossRefGoogle Scholar
  58. Zhen W, Ye S, Li J, Bo Z, Bao M, Ning G (2011) Fusion primer and nested integrated PCR (FPNI-PCR): a new high-efficiency strategy for rapid chromosome walking or flanking sequence cloning. BMC Biotechnol 11:109–120. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Pingan Guo
    • 1
  • Yancheng Zheng
    • 1
  • Jie Chen
    • 1
  • Bo Wang
    • 1
  • Lijun Liu
    • 1
  • Enying Feng
    • 2
  • Dingxiang Peng
    • 1
    Email author
  1. 1.MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
  2. 2.Science and Technology Information InstituteGuizhou Academy of Agricultural ScienceGuiyangChina

Personalised recommendations