Advertisement

Journal of Thrombosis and Thrombolysis

, Volume 48, Issue 3, pp 491–499 | Cite as

Interactions between clopidogrel and traditional Chinese medicine

  • Yunzhen HuEmail author
  • Jing Wang
Article
  • 87 Downloads

Abstract

The use of traditional Chinese medicine (TCM) has obtained more and more acceptance all over the world due to its multi-target and multi-level function characteristics. Clopidogrel is a major therapeutic option to reduce atherothrombotic events in patients with acute coronary syndrome, recent myocardial infarction, recent stroke or established peripheral arterial disease. These patients probably take TCM. Are there any interactions between clopidogrel and TCM? Whether TCM will affect the efficacy of clopidogrel or increase the adverse reactions of bleeding? Clarifying this information will help physicians make better use of TCM. A literature search was carried out using Web of Science, PubMed and the Cochrane Library to analyze the pharmacokinetic or pharmacodynamic interactions of clopidogrel and TCM. Some herbs can increase the AUC or Cmax of clopidogrel, such as Scutellarin, Danggui, Gegen, Sauchinone and Dengzhan Shengmai capsules. Whereas others can decrease clopidogrel, for example, Ginkgo and Danshen. Furthermore, some herbs can increase the AUC or Cmax of clopidogrel active metabolite, including Ginkgo and Xuesaitong tablet. And others can decrease the clopidogrel active metabolite, such as Scutellarin, Danshen, Fufang Danshen Dripping Pill and Dengzhan Shengmai capsules. Additionally, Schisandra chinensis, Danggui, Gegen and Fufang Danshen Dripping Pill can decrease the AUC or Cmax of the clopidogrel inactive metabolite, while Curcumin on the contrary. The pharmacodynamics of Panax notoginseng, Notoginsenoside Ft1, Hypericum perforatum, Shexiang baoxin pills, Naoxintong capsule increased the antiplatelet activity compared with clopidogrel alone, while Danshen decreased the platelet inhibition. In adverse reactions, Danggui can enhance the adverse effects of clopidogrel on the bleeding time. With more awareness and understanding on potential drug-herb interactions of clopidogrel and TCM, it may be possible to combine clopidogrel with TCM herbs to yield a better therapeutic outcome.

Keywords

Clopidogrel Traditional Chinese medicine TCM Drug interaction 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 81703612).

Compliance with ethical standards

Conflict of interest

There are no conflicts of interest for all the authors involved.

References

  1. 1.
    Brar SS, tenBerg J, Marcucci R, Price MJ, Valgimigli M, Kim HS, Patti G, Breet NJ, DiSciascio G, Cuisset T, Dangas G (2011) Impact of platelet reactivity on clinical outcomes after percutaneous coronary intervention:a collaborative metaanalysis of individual participant data. J Am Coll Cardiol 58:1945–1954CrossRefGoogle Scholar
  2. 2.
    Tantry US, Bonello L, Aradi D, Price MJ, Jeong YH, Angiolillo DJ (2013) Consensus and update on the definition of on-treatment platelet reactivity to adenosine diphosphate associated with ischemia and bleeding. J Am Coll Cardiol 62:2261–2273CrossRefGoogle Scholar
  3. 3.
    Bates ER, Lau WC, Angiolillo DJ (2011) Clopidogrel-drug interactions. J Am Coll Cardiol 57:1251–1263CrossRefGoogle Scholar
  4. 4.
    Pereillo JM, Maftouh M, Andrieu A, Uzabiaga MF, Fedeli O, Savi P, Pascal M, Herbert JM, Maffrand JP, Picard C (2002) Structure and stereochemistry of the active metabolite of clopidogrel. Drug Metab Dispos 30:1288–1295CrossRefGoogle Scholar
  5. 5.
    Price MJ, Angiolillo DJ, Teirstein PS, Lillie E, Manoukian SV, Berger PB, Tanguay JF, Cannon CP, Topol EJ (2011) Platelet reactivity and cardiovascular outcomes after percutaneous coronary intervention: a time-dependent analysis of the gauging responsiveness with a verify now P2Y12 assay: impact on thrombosis and safety (GRAVITAS) trial. Circulation 124:1132–1137CrossRefGoogle Scholar
  6. 6.
    Stone GW, Witzenbichler B, Weisz G, Rinaldi MJ, Neumann FJ, Metzger DC, Henry TD, Cox DA, Duffy PL, Mazzaferri E, Gurbel PA, Xu K, Parise H, Kirtane AJ, Brodie BR, Mehran R, Stuckey TD, Investigators ADAPT-DES (2013) Platelet reactivity and clinical outcomes after coronary artery implantation of drug-eluting stents (ADAPT-DES): a prospective multicentre registry study. Lancet 382:614–623CrossRefGoogle Scholar
  7. 7.
    Taubert D, vonBeckerath N, Grimberg G, Lazar A, Jung N, Goeser T, Kastrati A, Schomig A, Schomig E (2006) Impact of P-glycoprotein on clopidogrel absorption. Clin Pharmacol Ther 80:486–501CrossRefGoogle Scholar
  8. 8.
    Zhang YJ, Li MP, Tang J, Chen XP (2017) Pharmacokinetic and pharmacodynamic responses to Clopidogrel: evidences and perspectives. Int J Environ Res Public Health 14(3):E301CrossRefGoogle Scholar
  9. 9.
    Siller-Matula J, Schrör K, Wojta J, Huber K (2007) Thienopyridines in cardiovascular disease:focus on clopidogrel resistance. Thromb Haemost 97:385–393CrossRefGoogle Scholar
  10. 10.
    Wang ZY, Chen M, Zhu LL, Yu LS, Zeng S, Xiang MX, Zhou Q (2015) Pharmacokinetic drug interactions with clopidogrel: updated review and risk management in combination therapy. Ther Clin Risk Manag 11:449–467Google Scholar
  11. 11.
    Huang MY, Zhang LL, Ding J, Lu JJ (2018) Anticancer drug discovery from Chinese medicinal herbs. Chin Med 13:35CrossRefGoogle Scholar
  12. 12.
    Zhou SF, Zhou ZW, Li CG et al (2007) Identification of drugs that interact with herbs in drug development. Drug Discov Today 12:664–673CrossRefGoogle Scholar
  13. 13.
    Meng K, Zhu HG, Song XT, Ge CJ, Zhou Y, Dai J, Lu SZ (2013) Effects of Panax notoginseng combinating with dual antiplatelet drugs on the major adverse cardiovascular events in pafients undergoing percutaneous coronary intervention procedure. Chinese medicine 8(4):445–447Google Scholar
  14. 14.
    Gao B, Huang L, Liu H, Wu H, Zhang E, Yang L, Wu X, Wang Z (2014) Platelet P2Y12 receptors are involved in the haemostatic effect of notoginsenoside Ft1, a saponin isolated from Panax notoginseng. Br J Pharmacol 171(1):214–223CrossRefGoogle Scholar
  15. 15.
    Dai G, Jiang Z, Bai Y, Zhang Q, Zhu L, Bai X, Ju W, Pan R (2017) Pharmacokinetic herb-drug interaction of Xuesaitong dispersible tablet and aspirin after oral administration in blood stasis model rats. Phytomedicine 26:62–68CrossRefGoogle Scholar
  16. 16.
    Ma S, Dai G, Bi X, Gong M, Miao C, Chen H, Gao L, Zhao W, Liu T, Zhang N (2018) The herb-drug interaction of Clopidogrel and Xuesaitong dispersible tablet by modulation of the pharmacodynamics and liver carboxylesterase 1A metabolism. Evid Based Complement Alternat Med 2018:5651989Google Scholar
  17. 17.
    Ma ST, Dai GL, Bi XL, Gong MR, Xiong YY, Ju WZ, Tan HS (2016) Synergistic effects of Clopidogrel and Xuesaitong dispersible tablet by modulating plasma protein binding. Zhong Yao Cai 39(4):872–875 (Chinese) Google Scholar
  18. 18.
    Zhou L, Zuo Z, Chow MS (2005) Danshen: an overview of its chemistry, pharmacology, pharmacokinetics, and clinical use. J Clin Pharmacol 45:1345–1359CrossRefGoogle Scholar
  19. 19.
    Cheng TO (2007) Cardiovascular effects of Danshen. Int J Cardiol 121:9–22CrossRefGoogle Scholar
  20. 20.
    Wang BQ (2010) Salvia miltiorrhiza: chemical and pharmacological review of a medicinal plant. J Med Plants Res 4:2813–2820Google Scholar
  21. 21.
    Zhou CH, Xu M, Yu HB, Zheng XT, Zhong ZF, Zhang LT (2018) Effects of Danshen capsules on the pharmacokinetics and pharmacodynamics of clopidogrel in healthy volunteers. Food Chem Toxicol 119:302–308CrossRefGoogle Scholar
  22. 22.
    Xiao M, Qian C, Luo X, Yang M, Zhang Y, Wu C, Mok C, Lee P, Zuo Z (2019) Impact of the Chinese herbal medicines on dual antiplatelet therapy with clopidogrel and aspirin: pharmacokinetics and pharmacodynamics outcomes and related mechanisms in rats. J Ethnopharmacol 10(235):100–110CrossRefGoogle Scholar
  23. 23.
    Ji S, Shao X, Su ZY, Ji L, Wang YJ, Ma YS, Zhao L, Du Y, Guo MZ, Tang DQ (2019) Segmented scan modes and polarity-based LC-MS for pharmacokinetic interaction study between Fufang Danshen Dripping Pill and Clopidogrel Bisulfate Tablet. J Pharm Biomed Anal 174:367–375CrossRefGoogle Scholar
  24. 24.
    Ma S, Ju W, Dai G, Zhao W, Cheng X, Fang Z, Tan H, Wang X (2014) Synergistic effects of clopidogrel and fufang danshen dripping pills by modulation of the metabolism target and pharmacokinetics. Evid Based Complement Alternat Med 2014:789142Google Scholar
  25. 25.
    Ma ST, Dai GL, Sun BT, Zhao WZ, Ju WZ, Tan HS (2014) Effect of Clopidogrel on Pharmacokinetic of Fufang Danshen Dripping Pill (FDDP). Zhong Yao Cai 37(12):2240–2243 (Chinese) Google Scholar
  26. 26.
    Ma ST, Dai GL, Cheng XG, Zhao WZ, Sun BT, Ju WZ, Tan HS (2014) Synergistic action of compound danshen dripping pill (CDDP) on clopidogrel bisulfate (CPG) counteracting platelet aggregation. Zhong Yao Cai 37(10):1820–1825 (Chinese) Google Scholar
  27. 27.
    Guo MZ, Wang TY, Yang J, Chang H, Ji S, Tang DQ (2019) Interaction of clopidogrel and fufang danshen dripping pills assay in coronary heart disease based on non-target metabolomics. J Ethnopharmacol 24(234):189–196CrossRefGoogle Scholar
  28. 28.
    Deng Y, Mo YF, Chen XM, Zhang LZ, Liao CF, Song Y, Xu C (2016) Effect of Ginkgo Biloba extract on the pharmacokinetics and metabolism of clopidogrel in rats. Phytother Res 30(11):1886–1892CrossRefGoogle Scholar
  29. 29.
    Hellum BH, Nilsen OG (2008) In vitro inhibition of CYP3A4 metabolism and P-glycoprotein-mediated transport by trade herbal products. Basic Clin Pharmacol Toxicol 102(5):466–475CrossRefGoogle Scholar
  30. 30.
    Zhu J, Chen L, Qi Y, Feng J, Zhu L, Bai Y, Wu H (2018) Protective effects of Erigeron breviscapus Hand.- Mazz. (EBHM) extract in retinal neurodegeneration models. Mol Vis 24:315–325Google Scholar
  31. 31.
    Chen X, Jin J, Chen Y, Peng L, Zhong G, Li J, Bi H, Cai Y, Huang M (2015) Effect of scutellarin on the metabolism and pharmacokinetics of clopidogrel in rats. Biopharm Drug Dispos 36(1):64–68CrossRefGoogle Scholar
  32. 32.
    Chen X, Zhao Z, Chen Y, Gou X, Zhou Z, Zhong G, Cai Y, Huang M, Jin J (2016) Mechanistic understanding of the effect of Dengzhan Shengmai capsule on the pharmacokinetics of clopidogrel in rats. J Ethnopharmacol 192:362–369CrossRefGoogle Scholar
  33. 33.
    Sowndhararajan K, Deepa P, Kim M, Park SJ, Kim S (2018) An overview of neuroprotective and cognitive enhancement properties of lignans from Schisandra chinensis. Biomed Pharmacother 97:958–968CrossRefGoogle Scholar
  34. 34.
    Panossian A, Wikman G (2008) Pharmacology of Schisandra chinensis Bail: an overview of Russian research and uses in medicine. J Ethnopharmacol 118(2):183–212CrossRefGoogle Scholar
  35. 35.
    Dai GX (2012) Effect of Schisandra chinensis extract on pharmacokinetics of clopidogrel in rats[master’s thesis]. Wenzhou Medical University: PharmacologyGoogle Scholar
  36. 36.
    Yue SJ, Xin LT, Fan YC, Li SJ, Tang YP, Duan JA, Guan HS, Wang CY (2017) Herb pair Danggui-Honghua: mechanisms underlying blood stasis syndrome by system pharmacology approach. Sci Rep 7:40318CrossRefGoogle Scholar
  37. 37.
    Li Y, Wang N (2010) Antithrombotic effects of Danggui, Honghua and potential drug interaction with clopidogrel. J Ethnopharmacol 128(3):623–628CrossRefGoogle Scholar
  38. 38.
    Rahimi R, Abdollahi M (2012) An update on the ability of St. John’s wort to affect the metabolism of other drugs. Expert Opin Drug Metab Toxicol 8(6):691–708CrossRefGoogle Scholar
  39. 39.
    Lau WC, Welch TD, Shields T, Rubenfire M, Tantry US, Gurbel PA (2011) The effect of St John’s wort on the pharmacodynamic response of clopidogrel in hyporesponsive volunteers and patients: increased platelet inhibition by enhancement of CYP3A4 metabolic activity. J Cardiovasc Pharmacol 57:86–93CrossRefGoogle Scholar
  40. 40.
    Trana C, Toth G, Wijns W, Barbato E (2013) St. John’s Wort in patients non-responders to clopidogrel undergoing percutaneous coronary intervention: a single-center randomized open-label trial (St. John’s Trial). J Cardiovasc Transl Res 6(3):411–414CrossRefGoogle Scholar
  41. 41.
    Zhang Z, Lam TN, Zuo Z (2013) Radix Puerariae: an overview of its chemistry, pharmacology, pharmacokinetics, and clinical use. J Clin Pharmacol 53:787–811CrossRefGoogle Scholar
  42. 42.
    Guerra MC, Speroni E, Broccoli M, Cangini M, Pasini P, Minghett A, Crespi-Perellino N, Mirasoli M, Cantelli-Forti G, Paolini M (2000) Comparison between Chinese medical herb Pueraria Lobata crude extract and its main isoflavone puerarin antioxidant properties and effects on rat liver CYP-catalysed drug metabolism. Life Sci 67:2997–3006CrossRefGoogle Scholar
  43. 43.
    Zheng J, Chen B, Jiang B, Zeng L, Tang ZR, Fan L, Zhou HH (2010) The effects of puerarin on CYP2D6 and CYP1A2 activities in vivo. Arch Pharm Res 33:243–246CrossRefGoogle Scholar
  44. 44.
    Kim YW, Jang EJ, Kim CH, Lee JH (2018) Sauchinone prevents IL-1β-induced inflammatory response in human chondrocytes. J Biochem Mol Toxicol 32(3):e22033CrossRefGoogle Scholar
  45. 45.
    Gong EC, Chea S, Balupuri A, Kang NS, Chin YW, Choi YH (2018) Enzyme kinetics and molecular docking studies on cytochrome 2B6, 2C19, 2E1, and 3A4 activities by sauchinone. Molecules 23(3):E555CrossRefGoogle Scholar
  46. 46.
    Mirzaei H, Shakeri A, Rashidi B, Jalili A, Banikazemi Z, Sahebkar A (2017) Phytosomal curcumin: a review of pharmacokinetic, experimental and clinical studies. Biomed Pharmacother 85:102–112CrossRefGoogle Scholar
  47. 47.
    Liu AC, Zhao LX, Lou HX (2013) Curcumin alters the pharmacokinetics of warfarin and clopidogrel in Wistar rats but has no effect on anticoagulation or antiplatelet aggregation. Planta Med 79(11):971–977CrossRefGoogle Scholar
  48. 48.
    Hu S, Belcaro G, Dugall M, Peterzan P, Hosoi M, Ledda A, Riva A, Giacomelli L, Togni S, Eggenhoffner R, Cotellese R (2018) Interaction study between antiplatelet agents, anticoagulants, thyroid replacement therapy and a bioavailable formulation of curcumin (Meriva®). Eur Rev Med Pharmacol Sci 22(15):5042–5046Google Scholar
  49. 49.
    Choi JH, Park JK, Kim KM, Lee HJ, Kim S (2018) In vitro and in vivo antithrombotic and cytotoxicity effects of ferulic acid. J Biochem Mol Toxicol 32(1):e22004CrossRefGoogle Scholar
  50. 50.
    Li Y, Liu C, Zhang Y, Mi S, Wang N (2011) Pharmacokinetics of ferulic acid and potential interactions with Honghua and clopidogrel in rats. J Ethnopharmacol 137:562–567CrossRefGoogle Scholar
  51. 51.
    Huang H, Yang Y, Lv C, Chang W, Peng C, Wang S, Ge G, Han L, Zhang W, Liu R (2015) Pharmacokinetics and tissue distribution of five bufadienolides from the Shexiang Baoxin pill following oral administration to mice. J Ethnopharmacol 161:175–185CrossRefGoogle Scholar
  52. 52.
    Dong T, Wang J, Ma X, Ma R, Wen J, Chen N, Xie Q (2018) Shexiang Baoxin pills as an adjuvant treatment for chronic heart failure: a system review and meta-analysis. Evid Based Complement Alternat 1:1.  https://doi.org/10.1155/2018/6949348 Google Scholar
  53. 53.
    Zhang L, Liu N, Zhang J, Zhang H (2016) Effect of Shexiang baoxin pills on clopidogrel resistance in patients with acute coronary syndrome. Pak J Pharm Sci 29(6 Suppl):2303–2306Google Scholar
  54. 54.
    Chen H, Wu XY, Wu HX, Wang H (2014) A randomized controlled trial of adjunctive Bunchang Naoxintong Capsule versus maintenance dose clopidogrel in patients with CYP2C19*2 polymorphism. Chin J Integr Med 20(12):894–902CrossRefGoogle Scholar
  55. 55.
    Xu J, Qiu JC, Ji X, Guo HL, Wang X, Zhang B, Wang T, Chen F (2019) Potential pharmacokinetic herb-drug interactions: have we overlooked the importance of human carboxylesterases 1 and 2? Curr Drug Metab 20(2):130–137CrossRefGoogle Scholar
  56. 56.
    Wang LS, Zhou G, Zhu B, Wu J, Wang JG, Abd El-Aty AM, Li T, Liu J, Yang TL, Wang D, Zhong XY, Zhou HH (2004) St John’s wort induces both cytochrome P450 3A4-catalyzed sulfoxidation and 2C19-dependent hydroxylation of omeprazole. Clin Pharmacol Ther 75(3):191–197CrossRefGoogle Scholar
  57. 57.
    Kupiec T, Raj V (2005) Fatal seizures due to potential herb-drug interactions with Ginkgo biloba. J Anal Toxicol 29(7):755–758CrossRefGoogle Scholar
  58. 58.
    Cheng C, Qian J, Wang Z, Li W, Huang C, Chen M, Dong Y, Lian L, Sun W (2019) Influences of Corydalis decumbens on the activities of CYP450 enzymes in rats with a cocktail approach. Biomed Res Int 2019:9614781Google Scholar
  59. 59.
    Fan L, Wang G, Wang LS, Chen Y, Zhang W, Huang YF, Huang RX, Hu DL, Wang D, Zhou HH (2007) Herbal medicine yin zhi huang induces CYP3A4-mediated sulfoxidation and CYP2C19-dependent hydroxylation of omeprazole. Acta Pharmacol Sin 28(10):1685–1692CrossRefGoogle Scholar
  60. 60.
    Jeon WY, Jin SE, Seo CS, Lee MY, Shin HK, Han SC, Ha H (2019) Safety assessment of Gyejibokryeong-hwan water extract: study of acute and subacute toxicity, and influence on drug metabolizing enzymes. J Ethnopharmacol 240:111913CrossRefGoogle Scholar
  61. 61.
    Fantoukh OI, Dale OR, Parveen A, Hawwal MF, Ali Z, Manda VK, Khan SI, Chittiboyina AG, Viljoen A, Khan IA (2019) Safety assessment of phytochemicals derived from the globalized South African Rooibos Tea (Aspalathus linearis) through interaction with CYP, PXR, and P-gp. J Agric Food Chem 67(17):4967–4975CrossRefGoogle Scholar
  62. 62.
    Zhang JX, Qi MJ, Shi MZ, Chen JJ, Zhang XQ, Yang J, Zhang KZ, Han YL, Guo C (2019) Effects of Danhong injection, a traditional Chinese medicine, on nine cytochrome P450 isoforms in vitro. Biomed Chromatogr 33(4):e4454CrossRefGoogle Scholar
  63. 63.
    Liu R, Dobson CC, Foster BC, Durst T, Sanchez P, Arnason JT, Harris CS (2019) Effect of an anxiolytic botanical containing Souroubea sympetala and Platanus occidentalis on in vitro diazepam human cytochrome P450-mediated metabolism. J Pharm Pharmacol 71(3):429–437CrossRefGoogle Scholar
  64. 64.
    Kim SB, Kim KS, Kim DD, Yoon IS (2019) Metabolic interactions of rosmarinic acid with human cytochrome P450 monooxygenases and uridine diphosphate glucuronosyltransferases. Biomed Pharmacother 110:111–117CrossRefGoogle Scholar
  65. 65.
    Jeon WY, Jin SE, Lee MY, Seo CS, Shin HK, Kim YB, Ha H (2018) Safety assessment of Oryeong-san, a traditional herbal formula: study of subacute toxicity and influence of cytochrome P450 s and UDP-glucuronosyltransferases. Regul Toxicol Pharmacol 98:88–97CrossRefGoogle Scholar
  66. 66.
    Ab Rahman NS, Abd Majid FA, Abd Wahid ME, Zainudin AN, Zainol SN, Ismail HF, Wong TS, Tiwari NK, Giri S, Bhargava V (2018) Evaluation of herb-drug interaction of Synacinn™ and individual biomarker through cytochrome 450 inhibition assay. Drug Metab Lett 12(1):62–67CrossRefGoogle Scholar
  67. 67.
    Elbarbry F, Ung A, Abdelkawy K (2018) Studying the inhibitory effect of quercetin and thymoquinone on human cytochrome P450 enzyme activities. Pharmacogn Mag 13(Suppl 4):S895–S899Google Scholar
  68. 68.
    Fasinu PS, Manda VK, Dale OR, Egiebor NO, Walker LA, Khan SI (2017) Modulation of cytochrome P450, P-glycoprotein and pregnane X receptor by selected antimalarial herbs-implication for herb-drug interaction. Molecules 22(12):E2049CrossRefGoogle Scholar
  69. 69.
    Rehman SU, Kim IS, Choi MS, Kim SH, Zhang Y, Yoo HH (2017) Time-dependent Inhibition of CYP2C8 and CYP2C19 by Hedera helix extracts, a traditional respiratory herbal medicine. Molecules 22(7):E1241CrossRefGoogle Scholar
  70. 70.
    Kang D, Geng T, Lian Y, Li Y, Ding G, Huang W, Ma S, Wang Z, Ma Z, Xiao W (2017) Direct inhibition of Re Du Ning Injection and its active compounds on human liver cytochrome P450 enzymes by a cocktail method. Biomed Chromatogr 31(7):e3905CrossRefGoogle Scholar
  71. 71.
    Thomford NE, Dzobo K, Chopera D, Wonkam A, Maroyi A, Blackhurst D, Dandara C (2016) In vitro reversible and time-dependent CYP450 inhibition profiles of medicinal herbal plant extracts Newbouldia laevis and Cassia abbreviata: implications for herb-drug interactions. Molecules 21(7):E891CrossRefGoogle Scholar
  72. 72.
    Jin SE, Ha H, Shin HK (2017) Effects of traditional herbal formulae on human CYP450 isozymes. Chin J Integr Med 23(1):62–69CrossRefGoogle Scholar
  73. 73.
    Elsebai MF, Abass K, Hakkola J, Atawia AR, Farag MA (2016) The wild Egyptian artichoke as a promising functional food for the treatment of hepatitis C virus as revealed via UPLC-MS and clinical trials. Food Funct 7(7):3006–3016CrossRefGoogle Scholar
  74. 74.
    Yi JM, Kim YA, Lee YJ, Bang OS, Kim NS (2015) Effect of an ethanol extract of Descurainia sophia seeds on Phase I and II drug metabolizing enzymes and P-glycoprotein activity in vitro. BMC Complement Altern Med 15:441CrossRefGoogle Scholar
  75. 75.
    Salminen KA, Rahnasto-Rilla M, Väänänen R, Imming P, Meyer A, Horling A, Poso A, Laitinen T, Raunio H, Lahtela-Kakkonen M (2015) Time-dependent inhibition of CYP2C19 by isoquinoline alkaloids: in vitro and in silico analysis. Drug Metab Dispos 43(12):1891–1904CrossRefGoogle Scholar
  76. 76.
    Han YM, Kim IS, Rehman SU, Choe K, Yoo HH (2015) In vitro evaluation of the effects of Eurycoma longifolia extract on CYP-mediated drug metabolism. Evid Based Complement Alternat Med.  https://doi.org/10.1155/2015/631329 Google Scholar
  77. 77.
    Hu T, Zhou X, Wang L, Or PM, Yeung JH, Kwan YW, Cho CH (2015) Effects of tanshinones from Salvia miltiorrhiza on CYP2C19 activity in human liver microsomes: enzyme kinetic and molecular docking studies. Chem Biol Interact 230:1–8CrossRefGoogle Scholar
  78. 78.
    Du X, Ye H, Zhang C, Ye L, Lin G (2015) Effect of kanglaite on rat cytochrome P450. Pharm Biol 53(7):995–1001CrossRefGoogle Scholar
  79. 79.
    Lee SY, Jang H, Lee JY, Ma JY, Oh SJ, Kim SK (2015) Inhibitory effects of Hwang-Ryun-Hae-Dok-Tang on cytochrome P450 in human liver microsomes. Xenobiotica 45(2):131–138CrossRefGoogle Scholar
  80. 80.
    Gao LN, Zhang Y, Cui YL, Yan K (2014) Evaluation of genipin on human cytochrome P450 isoenzymes and P-glycoprotein in vitro. Fitoterapia 98:130–136CrossRefGoogle Scholar
  81. 81.
    Jung H, Lee S (2014) Inhibition of human cytochrome P450 enzymes by allergen removed Rhus verniciflua stoke standardized extract and constituents. Evid Based Complement Alternat Med 2014:150351Google Scholar
  82. 82.
    Sim J, Jang HW, Song M, Kim JH, Lee SH, Lee S (2014) Potent inhibitory effect of alpha-viniferin on human cytochrome P450. Food Chem Toxicol 69:276–280CrossRefGoogle Scholar
  83. 83.
    Ramasamy S, Kiew LV, Chung LY (2014) Inhibition of human cytochrome P450 enzymes by Bacopa monnieri standardized extract and constituents. Molecules 19(2):2588–2601CrossRefGoogle Scholar
  84. 84.
    Jeong HU, Kong TY, Kwon SS, Hong SW, Yeon SH, Choi JH, Lee JY, Cho YY, Lee HS (2013) Effect of honokiol on cytochrome P450 and UDP-glucuronosyltransferase enzyme activities in human liver microsomes. Molecules 18(9):10681–10693CrossRefGoogle Scholar
  85. 85.
    Kim IS, Kim SY, Yoo HH (2012) Effects of an aqueous-ethanolic extract of ginger on cytochrome P450 enzyme-mediated drug metabolism. Pharmazie 67(12):1007–1009Google Scholar
  86. 86.
    Pan Y, Abd-Rashid BA, Ismail Z, Ismail R, Mak JW, Pook PC, Er HM, Ong CE (2011) In vitro modulatory effects of Andrographis paniculata, Centella asiatica and Orthosiphon stamineus on cytochrome P450 2C19 (CYP2C19). J Ethnopharmacol 133(2):881–887CrossRefGoogle Scholar
  87. 87.
    Ji HY, Kim SY, Kim DK, Jeong JH, Lee HS (2010) Effects of eupatilin and jaceosidin on cytochrome p450 enzyme activities in human liver microsomes. Molecules 15(9):6466–6475CrossRefGoogle Scholar
  88. 88.
    Sevior DK, Hokkanen J, Tolonen A, Abass K, Tursas L, Pelkonen O, Ahokas JT (2010) Rapid screening of commercially available herbal products for the inhibition of major human hepatic cytochrome P450 enzymes using the N-in-one cocktail. Xenobiotica 40(4):245–254CrossRefGoogle Scholar
  89. 89.
    Seely D, Kennedy DA, Myers SP, Cheras PA, Lin D, Li R, Cattley T, Brent PA, Mills E, Leonard BJ (2007) In vitro analysis of the herbal compound Essiac. Anticancer Res 27(6B):3875–3882Google Scholar
  90. 90.
    Liu KH, Kim MJ, Jeon BH, Shon JH, Cha IJ, Cho KH, Lee SS, Shin JG (2006) Inhibition of human cytochrome P450 isoforms and NADPH-CYP reductase in vitro by 15 herbal medicines, including Epimedii herba. J Clin Pharm Ther 31(1):83–91CrossRefGoogle Scholar
  91. 91.
    Kim KA, Lee JS, Park HJ, Kim JW, Kim CJ, Shim IS, Kim NJ, Han SM, Lim S (2004) Inhibition of cytochrome P450 activities by oleanolic acid and ursolic acid in human liver microsomes. Life Sci 74(22):2769–2779CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Pharmacy, The First Affiliated Hosptial, College of MedicineZhejiang UniversityHangzhouChina

Personalised recommendations