Advertisement

The pleiotropic effect of rs7903146 on type 2 diabetes and ischemic stroke: a family-based study in a Chinese population

  • Jing Song
  • Yiqun Wu
  • Juan Juan
  • Yaying Cao
  • Tao Wu
  • Yonghua HuEmail author
Article
  • 31 Downloads

Abstract

The rs7903146, an established genetic variant susceptible to type 2 diabetes (T2D), is also reported to be related to ischemic stroke (IS), though conflicting. Furthermore, it remained unknown whether the genetic association with stroke is independent of T2D. In the current study, 1603 individuals across 986 families were included. The genetic pleiotropic effect on each outcome diseases (T2D, overall IS, or each subtype) was assessed using multilevel logistic regression after adjustment for multiple covariates. Principal component of heritability (PCH) was also used to assess the pleiotropy by combining T2D and IS into one outcome for analysis. To identify the T2D-independent path out of the pleiotropic effect on IS, T2D status was additionally adjusted for the risk of IS or each subtype. The analyses of putative molecular pathways (dyslipidemia, hypertension, obesity and inflammation) and gene-lifestyle interactions were also performed. We found that rs7903146_T allele was associated with a 77% higher risk of T2D, 55% of IS, and 70% of large artery atherosclerosis (LAA) subtype respectively. Particularly, a T2D-independent genetic effect was identified to increase the risk of overall IS and LAA. No evidence on the molecular mechanisms and gene-lifestyle interaction behind the pleiotropic genetic effect was observed. In conclusion, our study provided evidence that a T2D-independent path was identified out of the pleiotropic effect of rs7903146 on IS. However, further studies were needed to validate the biological mechanisms behind the pleiotropic effect and the modification by lifestyle intervention.

Keywords

Transcription factor 7-like 2 Ischemic stroke Type 2 diabetes Interaction Pleiotropy 

Notes

Acknowledgements

We would like to thank all the participants, the project staff, and Beijing Fangshan District Center for Disease Control for their help with the fieldwork. This study was supported by grants from the National Natural Science Foundation of China (81230066, 81102177, 81172744, 81573226, and 81703291).

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflicts of interest.

Supplementary material

11239_2019_1855_MOESM1_ESM.pdf (80 kb)
Electronic supplementary material 1 (PDF 80 kb)
11239_2019_1855_MOESM2_ESM.xlsx (15 kb)
Electronic supplementary material 2 (XLSX 15 kb)
11239_2019_1855_MOESM3_ESM.xlsx (12 kb)
Electronic supplementary material 3 (XLSX 12 kb)
11239_2019_1855_MOESM4_ESM.xlsx (10 kb)
Electronic supplementary material 4 (XLSX 10 kb)
11239_2019_1855_MOESM5_ESM.xlsx (20 kb)
Electronic supplementary material 5 (XLSX 20 kb)

References

  1. 1.
    van Baal PH, Engelfriet PM, Boshuizen HC, van de Kassteele J, Schellevis FG, Hoogenveen RT (2011) Co-occurrence of diabetes, myocardial infarction, stroke, and cancer: quantifying age patterns in the Dutch population using health survey data. Popul Health Metr 9(1):51.  https://doi.org/10.1186/1478-7954-9-51 Google Scholar
  2. 2.
    Luitse MJ, Biessels GJ, Rutten GE, Kappelle LJ (2012) Diabetes, hyperglycaemia, and acute ischaemic stroke. Lancet Neurol 11(3):261–271.  https://doi.org/10.1016/S1474-4422(12)70005-4 Google Scholar
  3. 3.
    Emerging Risk Factors C, Sarwar N, Gao P, Seshasai SR, Gobin R, Kaptoge S, Di Angelantonio E, Ingelsson E, Lawlor DA, Selvin E, Stampfer M, Stehouwer CD, Lewington S, Pennells L, Thompson A, Sattar N, White IR, Ray KK, Danesh J (2010) Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet 375(9733):2215–2222.  https://doi.org/10.1016/S0140-6736(10)60484-9 Google Scholar
  4. 4.
    Peters SA, Huxley RR, Woodward M (2014) Diabetes as a risk factor for stroke in women compared with men: a systematic review and meta-analysis of 64 cohorts, including 775,385 individuals and 12,539 strokes. Lancet 383(9933):1973–1980.  https://doi.org/10.1016/S0140-6736(14)60040-4 Google Scholar
  5. 5.
    O’Donnell MJ, Chin SL, Rangarajan S, Xavier D, Liu L, Zhang H, Rao-Melacini P, Zhang X, Pais P, Agapay S, Lopez-Jaramillo P, Damasceno A, Langhorne P, McQueen MJ, Rosengren A, Dehghan M, Hankey GJ, Dans AL, Elsayed A, Avezum A, Mondo C, Diener HC, Ryglewicz D, Czlonkowska A, Pogosova N, Weimar C, Iqbal R, Diaz R, Yusoff K, Yusufali A, Oguz A, Wang X, Penaherrera E, Lanas F, Ogah OS, Ogunniyi A, Iversen HK, Malaga G, Rumboldt Z, Oveisgharan S, Al Hussain F, Magazi D, Nilanont Y, Ferguson J, Pare G, Yusuf S, Investigators I (2016) Global and regional effects of potentially modifiable risk factors associated with acute stroke in 32 countries (INTERSTROKE): a case-control study. Lancet 388(10046):761–775.  https://doi.org/10.1016/S0140-6736(16)30506-2 Google Scholar
  6. 6.
    Ji R, Schwamm LH, Pervez MA, Singhal AB (2013) Ischemic stroke and transient ischemic attack in young adults: risk factors, diagnostic yield, neuroimaging, and thrombolysis. JAMA Neurol 70(1):51–57.  https://doi.org/10.1001/jamaneurol.2013.575 Google Scholar
  7. 7.
    Chen R, Ovbiagele B, Feng W (2016) Diabetes and stroke: epidemiology, pathophysiology, pharmaceuticals and outcomes. Am J Med Sci 351(4):380–386.  https://doi.org/10.1016/j.amjms.2016.01.011 Google Scholar
  8. 8.
    Liu J, Rutten-Jacobs L, Liu M, Markus HS, Traylor M (2018) Causal impact of type 2 diabetes mellitus on cerebral small vessel disease: a Mendelian randomization analysis. Stroke 49(6):1325–1331.  https://doi.org/10.1161/STROKEAHA.117.020536 Google Scholar
  9. 9.
    Dale CE, Fatemifar G, Palmer TM, White J, Prieto-Merino D, Zabaneh D, Engmann JEL, Shah T, Wong A, Warren HR, McLachlan S, Trompet S, Moldovan M, Morris RW, Sofat R, Kumari M, Hypponen E, Jefferis BJ, Gaunt TR, Ben-Shlomo Y, Zhou A, Gentry-Maharaj A, Ryan A, Consortium U, Consortium M, Mutsert R, Noordam R, Caulfield MJ, Jukema JW, Worrall BB, Munroe PB, Menon U, Power C, Kuh D, Lawlor DA, Humphries SE, Mook-Kanamori DO, Sattar N, Kivimaki M, Price JF, Davey Smith G, Dudbridge F, Hingorani AD, Holmes MV, Casas JP (2017) Causal associations of adiposity and body fat distribution with coronary heart disease, stroke subtypes, and type 2 diabetes mellitus: a mendelian randomization analysis. Circulation 135(24):2373–2388.  https://doi.org/10.1161/circulationaha.116.026560 Google Scholar
  10. 10.
    Dregan A, Charlton J, Chowienczyk P, Gulliford MC (2014) Chronic inflammatory disorders and risk of type 2 diabetes mellitus, coronary heart disease, and stroke: a population-based cohort study. Circulation 130(10):837–844.  https://doi.org/10.1161/CIRCULATIONAHA.114.009990 Google Scholar
  11. 11.
    Kyu HH, Bachman VF, Alexander LT, Mumford JE, Afshin A, Estep K, Veerman JL, Delwiche K, Iannarone ML, Moyer ML, Cercy K, Vos T, Murray CJ, Forouzanfar MH (2016) Physical activity and risk of breast cancer, colon cancer, diabetes, ischemic heart disease, and ischemic stroke events: systematic review and dose-response meta-analysis for the Global Burden of Disease Study 2013. BMJ 354:i3857.  https://doi.org/10.1136/bmj.i3857 Google Scholar
  12. 12.
    Martinez-Gonzalez MA, Salas-Salvado J, Estruch R, Corella D, Fito M, Ros E, Predimed I (2015) Benefits of the Mediterranean diet: insights from the PREDIMED study. Prog Cardiovasc Dis 58(1):50–60.  https://doi.org/10.1016/j.pcad.2015.04.003 Google Scholar
  13. 13.
    Micha R, Wallace SK, Mozaffarian D (2010) Red and processed meat consumption and risk of incident coronary heart disease, stroke, and diabetes mellitus: a systematic review and meta-analysis. Circulation 121(21):2271–2283.  https://doi.org/10.1161/CIRCULATIONAHA.109.924977 Google Scholar
  14. 14.
    Larsson SC, Akesson A, Wolk A (2015) Primary prevention of stroke by a healthy lifestyle in a high-risk group. Neurology 84(22):2224–2228.  https://doi.org/10.1212/WNL.0000000000001637 Google Scholar
  15. 15.
    Chung CM, Lin TH, Chen JW, Leu HB, Yang HC, Ho HY, Ting CT, Sheu SH, Tsai WC, Chen JH, Lin SJ, Chen YT, Pan WH (2011) A genome-wide association study reveals a quantitative trait locus of adiponectin on CDH13 that predicts cardiometabolic outcomes. Diabetes 60(9):2417–2423.  https://doi.org/10.2337/db10-1321 Google Scholar
  16. 16.
    Rankinen T, Sarzynski MA, Ghosh S, Bouchard C (2015) Are there genetic paths common to obesity, cardiovascular disease outcomes, and cardiovascular risk factors? Circ Res 116(5):909–922.  https://doi.org/10.1161/CIRCRESAHA.116.302888 Google Scholar
  17. 17.
    Kulminski AM, He L, Culminskaya I, Loika Y, Kernogitski Y, Arbeev KG, Loiko E, Arbeeva L, Bagley O, Duan M, Yashkin A, Fang F, Kovtun M, Ukraintseva SV, Wu D, Yashin AI (2016) Pleiotropic associations of allelic variants in a 2q22 region with risks of major human diseases and mortality. PLoS Genet 12(11):e1006314.  https://doi.org/10.1371/journal.pgen.1006314 Google Scholar
  18. 18.
    He L, Kernogitski Y, Kulminskaya I, Loika Y, Arbeev KG, Loiko E, Bagley O, Duan M, Yashkin A, Ukraintseva SV, Kovtun M, Yashin AI, Kulminski AM (2016) Pleiotropic meta-analyses of longitudinal studies discover novel genetic variants associated with age-related diseases. Front Genet 7:179.  https://doi.org/10.3389/fgene.2016.00179 Google Scholar
  19. 19.
    Bielinski SJ, Pankow JS, Folsom AR, North KE, Boerwinkle E (2008) TCF7L2 single nucleotide polymorphisms, cardiovascular disease and all-cause mortality: the atherosclerosis risk in communities (ARIC) study. Diabetologia 51(6):968–970.  https://doi.org/10.1007/s00125-008-1004-1 Google Scholar
  20. 20.
    Sousa AG, Selvatici L, Krieger JE, Pereira AC (2011) Association between genetics of diabetes, coronary artery disease, and macrovascular complications: exploring a common ground hypothesis. Rev Diabet Stud 8(2):230–244.  https://doi.org/10.1900/RDS.2011.8.230 Google Scholar
  21. 21.
    Solovieff N, Cotsapas C, Lee PH, Purcell SM, Smoller JW (2013) Pleiotropy in complex traits: challenges and strategies. Nat Rev Genet 14(7):483–495.  https://doi.org/10.1038/nrg3461 Google Scholar
  22. 22.
    Saxena R, Saleheen D, Been LF, Garavito ML, Braun T, Bjonnes A, Young R, Ho WK, Rasheed A, Frossard P, Sim X, Hassanali N, Radha V, Chidambaram M, Liju S, Rees SD, Ng DP, Wong TY, Yamauchi T, Hara K, Tanaka Y, Hirose H, McCarthy MI, Morris AP, Diagram MuTher, Agen Basit A, Barnett AH, Katulanda P, Matthews D, Mohan V, Wander GS, Singh JR, Mehra NK, Ralhan S, Kamboh MI, Mulvihill JJ, Maegawa H, Tobe K, Maeda S, Cho YS, Tai ES, Kelly MA, Chambers JC, Kooner JS, Kadowaki T, Deloukas P, Rader DJ, Danesh J, Sanghera DK (2013) Genome-wide association study identifies a novel locus contributing to type 2 diabetes susceptibility in Sikhs of Punjabi origin from India. Diabetes 62(5):1746–1755.  https://doi.org/10.2337/db12-1077 Google Scholar
  23. 23.
    Tabassum R, Chauhan G, Dwivedi OP, Mahajan A, Jaiswal A, Kaur I, Bandesh K, Singh T, Mathai BJ, Pandey Y, Chidambaram M, Sharma A, Chavali S, Sengupta S, Ramakrishnan L, Venkatesh P, Aggarwal SK, Ghosh S, Prabhakaran D, Srinath RK, Saxena M, Banerjee M, Mathur S, Bhansali A, Shah VN, Madhu SV, Marwaha RK, Basu A, Scaria V, McCarthy MI, Diagram Indico, Venkatesan R, Mohan V, Tandon N, Bharadwaj D (2013) Genome-wide association study for type 2 diabetes in Indians identifies a new susceptibility locus at 2q21. Diabetes 62(3):977–986.  https://doi.org/10.2337/db12-0406 Google Scholar
  24. 24.
    Consortium STD, Williams AL, Jacobs SB, Moreno-Macias H, Huerta-Chagoya A, Churchhouse C, Marquez-Luna C, Garcia-Ortiz H, Gomez-Vazquez MJ, Burtt NP, Aguilar-Salinas CA, Gonzalez-Villalpando C, Florez JC, Orozco L, Haiman CA, Tusie-Luna T, Altshuler D (2014) Sequence variants in SLC16A11 are a common risk factor for type 2 diabetes in Mexico. Nature 506(7486):97–101.  https://doi.org/10.1038/nature12828 Google Scholar
  25. 25.
    Replication DIG, Meta-analysis C, Asian Genetic Epidemiology Network Type 2 Diabetes C, South Asian Type 2 Diabetes C, Mexican American Type 2 Diabetes C, Type 2 Diabetes Genetic Exploration by Nex-generation sequencing in muylti-Ethnic Samples C, Mahajan A, Go MJ, Zhang W, Below JE, Gaulton KJ, Ferreira T, Horikoshi M, Johnson AD, Ng MC, Prokopenko I, Saleheen D, Wang X, Zeggini E, Abecasis GR, Adair LS, Almgren P, Atalay M, Aung T, Baldassarre D, Balkau B, Bao Y, Barnett AH, Barroso I, Basit A, Been LF, Beilby J, Bell GI, Benediktsson R, Bergman RN, Boehm BO, Boerwinkle E, Bonnycastle LL, Burtt N, Cai Q, Campbell H, Carey J, Cauchi S, Caulfield M, Chan JC, Chang LC, Chang TJ, Chang YC, Charpentier G, Chen CH, Chen H, Chen YT, Chia KS, Chidambaram M, Chines PS, Cho NH, Cho YM, Chuang LM, Collins FS, Cornelis MC, Couper DJ, Crenshaw AT, van Dam RM, Danesh J, Das D, de Faire U, Dedoussis G, Deloukas P, Dimas AS, Dina C, Doney AS, Donnelly PJ, Dorkhan M, van Duijn C, Dupuis J, Edkins S, Elliott P, Emilsson V, Erbel R, Eriksson JG, Escobedo J, Esko T, Eury E, Florez JC, Fontanillas P, Forouhi NG, Forsen T, Fox C, Fraser RM, Frayling TM, Froguel P, Frossard P, Gao Y, Gertow K, Gieger C, Gigante B, Grallert H, Grant GB, Grrop LC, Groves CJ, Grundberg E, Guiducci C, Hamsten A, Han BG, Hara K, Hassanali N, Hattersley AT, Hayward C, Hedman AK, Herder C, Hofman A, Holmen OL, Hovingh K, Hreidarsson AB, Hu C, Hu FB, Hui J, Humphries SE, Hunt SE, Hunter DJ, Hveem K, Hydrie ZI, Ikegami H, Illig T, Ingelsson E, Islam M, Isomaa B, Jackson AU, Jafar T, James A, Jia W, Jockel KH, Jonsson A, Jowett JB, Kadowaki T, Kang HM, Kanoni S, Kao WH, Kathiresan S, Kato N, Katulanda P, Keinanen-Kiukaanniemi KM, Kelly AM, Khan H, Khaw KT, Khor CC, Kim HL, Kim S, Kim YJ, Kinnunen L, Klopp N, Kong A, Korpi-Hyovalti E, Kowlessur S, Kraft P, Kravic J, Kristensen MM, Krithika S, Kumar A, Kumate J, Kuusisto J, Kwak SH, Laakso M, Lagou V, Lakka TA, Langenberg C, Langford C, Lawrence R, Leander K, Lee JM, Lee NR, Li M, Li X, Li Y, Liang J, Liju S, Lim WY, Lind L, Lindgren CM, Lindholm E, Liu CT, Liu JJ, Lobbens S, Long J, Loos RJ, Lu W, Luan J, Lyssenko V, Ma RC, Maeda S, Magi R, Mannisto S, Matthews DR, Meigs JB, Melander O, Metspalu A, Meyer J, Mirza G, Mihailov E, Moebus S, Mohan V, Mohlke KL, Morris AD, Muhleisen TW, Muller-Nurasyid M, Musk B, Nakamura J, Nakashima E, Navarro P, Ng PK, Nica AC, Nilsson PM, Njolstad I, Nothen MM, Ohnaka K, Ong TH, Owen KR, Palmer CN, Pankow JS, Park KS, Parkin M, Pechlivanis S, Pedersen NL, Peltonen L, Perry JR, Peters A, Pinidiyapathirage JM, Platou CG, Potter S, Price JF, Qi L, Radha V, Rallidis L, Rasheed A, Rathman W, Rauramaa R, Raychaudhuri S, Rayner NW, Rees SD, Rehnberg E, Ripatti S, Robertson N, Roden M, Rossin EJ, Rudan I, Rybin D, Saaristo TE, Salomaa V, Saltevo J, Samuel M, Sanghera DK, Saramies J, Scott J, Scott LJ, Scott RA, Segre AV, Sehmi J, Sennblad B, Shah N, Shah S, Shera AS, Shu XO, Shuldiner AR, Sigurdsson G, Sijbrands E, Silveira A, Sim X, Sivapalaratnam S, Small KS, So WY, Stancakova A, Stefansson K, Steinbach G, Steinthorsdottir V, Stirrups K, Strawbridge RJ, Stringham HM, Sun Q, Suo C, Syvanen AC, Takayanagi R, Takeuchi F, Tay WT, Teslovich TM, Thorand B, Thorleifsson G, Thorsteinsdottir U, Tikkanen E, Trakalo J, Tremoli E, Trip MD, Tsai FJ, Tuomi T, Tuomilehto J, Uitterlinden AG, Valladares-Salgado A, Vedantam S, Veglia F, Voight BF, Wang C, Wareham NJ, Wennauer R, Wickremasinghe AR, Wilsgaard T, Wilson JF, Wiltshire S, Winckler W, Wong TY, Wood AR, Wu JY, Wu Y, Yamamoto K, Yamauchi T, Yang M, Yengo L, Yokota M, Young R, Zabaneh D, Zhang F, Zhang R, Zheng W, Zimmet PZ, Altshuler D, Bowden DW, Cho YS, Cox NJ, Cruz M, Hanis CL, Kooner J, Lee JY, Seielstad M, Teo YY, Boehnke M, Parra EJ, Chambers JC, Tai ES, McCarthy MI, Morris AP (2014) Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat Genet 46(3):234–244.  https://doi.org/10.1038/ng.2897 Google Scholar
  26. 26.
    Lyssenko V, Lupi R, Marchetti P, Del Guerra S, Orho-Melander M, Almgren P, Sjogren M, Ling C, Eriksson KF, Lethagen AL, Mancarella R, Berglund G, Tuomi T, Nilsson P, Del Prato S, Groop L (2007) Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes. J Clin Invest 117(8):2155–2163.  https://doi.org/10.1172/JCI30706 Google Scholar
  27. 27.
    Manning AK, Hivert MF, Scott RA, Grimsby JL, Bouatia-Naji N, Chen H, Rybin D, Liu CT, Bielak LF, Prokopenko I, Amin N, Barnes D, Cadby G, Hottenga JJ, Ingelsson E, Jackson AU, Johnson T, Kanoni S, Ladenvall C, Lagou V, Lahti J, Lecoeur C, Liu Y, Martinez-Larrad MT, Montasser ME, Navarro P, Perry JR, Rasmussen-Torvik LJ, Salo P, Sattar N, Shungin D, Strawbridge RJ, Tanaka T, van Duijn CM, An P, de Andrade M, Andrews JS, Aspelund T, Atalay M, Aulchenko Y, Balkau B, Bandinelli S, Beckmann JS, Beilby JP, Bellis C, Bergman RN, Blangero J, Boban M, Boehnke M, Boerwinkle E, Bonnycastle LL, Boomsma DI, Borecki IB, Bottcher Y, Bouchard C, Brunner E, Budimir D, Campbell H, Carlson O, Chines PS, Clarke R, Collins FS, Corbaton-Anchuelo A, Couper D, de Faire U, Dedoussis GV, Deloukas P, Dimitriou M, Egan JM, Eiriksdottir G, Erdos MR, Eriksson JG, Eury E, Ferrucci L, Ford I, Forouhi NG, Fox CS, Franzosi MG, Franks PW, Frayling TM, Froguel P, Galan P, de Geus E, Gigante B, Glazer NL, Goel A, Groop L, Gudnason V, Hallmans G, Hamsten A, Hansson O, Harris TB, Hayward C, Heath S, Hercberg S, Hicks AA, Hingorani A, Hofman A, Hui J, Hung J, Jarvelin MR, Jhun MA, Johnson PC, Jukema JW, Jula A, Kao WH, Kaprio J, Kardia SL, Keinanen-Kiukaanniemi S, Kivimaki M, Kolcic I, Kovacs P, Kumari M, Kuusisto J, Kyvik KO, Laakso M, Lakka T, Lannfelt L, Lathrop GM, Launer LJ, Leander K, Li G, Lind L, Lindstrom J, Lobbens S, Loos RJ, Luan J, Lyssenko V, Magi R, Magnusson PK, Marmot M, Meneton P, Mohlke KL, Mooser V, Morken MA, Miljkovic I, Narisu N, O’Connell J, Ong KK, Oostra BA, Palmer LJ, Palotie A, Pankow JS, Peden JF, Pedersen NL, Pehlic M, Peltonen L, Penninx B, Pericic M, Perola M, Perusse L, Peyser PA, Polasek O, Pramstaller PP, Province MA, Raikkonen K, Rauramaa R, Rehnberg E, Rice K, Rotter JI, Rudan I, Ruokonen A, Saaristo T, Sabater-Lleal M, Salomaa V, Savage DB, Saxena R, Schwarz P, Seedorf U, Sennblad B, Serrano-Rios M, Shuldiner AR, Sijbrands EJ, Siscovick DS, Smit JH, Small KS, Smith NL, Smith AV, Stancakova A, Stirrups K, Stumvoll M, Sun YV, Swift AJ, Tonjes A, Tuomilehto J, Trompet S, Uitterlinden AG, Uusitupa M, Vikstrom M, Vitart V, Vohl MC, Voight BF, Vollenweider P, Waeber G, Waterworth DM, Watkins H, Wheeler E, Widen E, Wild SH, Willems SM, Willemsen G, Wilson JF, Witteman JC, Wright AF, Yaghootkar H, Zelenika D, Zemunik T, Zgaga L, Replication DIG, Meta-analysis C, Multiple Tissue Human Expression Resource C, Wareham NJ, McCarthy MI, Barroso I, Watanabe RM, Florez JC, Dupuis J, Meigs JB, Langenberg C (2012) A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nat Genet 44(6):659–669.  https://doi.org/10.1038/ng.2274 Google Scholar
  28. 28.
    Corella D, Carrasco P, Sorli JV, Estruch R, Rico-Sanz J, Martinez-Gonzalez MA, Salas-Salvado J, Covas MI, Coltell O, Aros F, Lapetra J, Serra-Majem L, Ruiz-Gutierrez V, Warnberg J, Fiol M, Pinto X, Ortega-Azorin C, Munoz MA, Martinez JA, Gomez-Gracia E, Gonzalez JI, Ros E, Ordovas JM (2013) Mediterranean diet reduces the adverse effect of the TCF7L2-rs7903146 polymorphism on cardiovascular risk factors and stroke incidence: a randomized controlled trial in a high-cardiovascular-risk population. Diabetes Care 36(11):3803–3811.  https://doi.org/10.2337/dc13-0955 Google Scholar
  29. 29.
    Winter Y, Back T, Scherag A, Linseisen J, Rohrmann S, Lanczik O, Hinney A, Scherag S, Neumaier M, Ringleb PA, Dodel R, Hebebrand J (2011) Evaluation of the obesity genes FTO and MC4R and the type 2 diabetes mellitus gene TCF7L2 for contribution to stroke risk: The Mannheim-Heidelberg Stroke Study. Obes Facts 4(4):290–296.  https://doi.org/10.1159/000330881 Google Scholar
  30. 30.
    Cui R, Iso H, Yamagishi K, Saito I, Kokubo Y, Inoue M, Tsugane S (2011) Diabetes mellitus and risk of stroke and its subtypes among Japanese: the Japan public health center study. Stroke 42(9):2611–2614.  https://doi.org/10.1161/STROKEAHA.111.614313 Google Scholar
  31. 31.
    Khoury JC, Kleindorfer D, Alwell K, Moomaw CJ, Woo D, Adeoye O, Flaherty ML, Khatri P, Ferioli S, Broderick JP, Kissela BM (2013) Diabetes mellitus: a risk factor for ischemic stroke in a large biracial population. Stroke 44(6):1500–1504.  https://doi.org/10.1161/STROKEAHA.113.001318 Google Scholar
  32. 32.
    Janghorbani M, Hu FB, Willett WC, Li TY, Manson JE, Logroscino G, Rexrode KM (2007) Prospective study of type 1 and type 2 diabetes and risk of stroke subtypes: the Nurses’ Health Study. Diabetes Care 30(7):1730–1735.  https://doi.org/10.2337/dc06-2363 Google Scholar
  33. 33.
    O’Donnell MJ, Xavier D, Liu L, Zhang H, Chin SL, Rao-Melacini P, Rangarajan S, Islam S, Pais P, McQueen MJ, Mondo C, Damasceno A, Lopez-Jaramillo P, Hankey GJ, Dans AL, Yusoff K, Truelsen T, Diener HC, Sacco RL, Ryglewicz D, Czlonkowska A, Weimar C, Wang X, Yusuf S, Investigators I (2010) Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-control study. Lancet 376(9735):112–123.  https://doi.org/10.1016/S0140-6736(10)60834-3 Google Scholar
  34. 34.
    Pilgaard K, Jensen CB, Schou JH, Lyssenko V, Wegner L, Brons C, Vilsboll T, Hansen T, Madsbad S, Holst JJ, Volund A, Poulsen P, Groop L, Pedersen O, Vaag AA (2009) The T allele of rs7903146 TCF7L2 is associated with impaired insulinotropic action of incretin hormones, reduced 24 h profiles of plasma insulin and glucagon, and increased hepatic glucose production in young healthy men. Diabetologia 52(7):1298–1307.  https://doi.org/10.1007/s00125-009-1307-x Google Scholar
  35. 35.
    Palmer ND, Lehtinen AB, Langefeld CD, Campbell JK, Haffner SM, Norris JM, Bergman RN, Goodarzi MO, Rotter JI, Bowden DW (2008) Association of TCF7L2 gene polymorphisms with reduced acute insulin response in Hispanic Americans. J Clin Endocrinol Metab 93(1):304–309.  https://doi.org/10.1210/jc.2007-1225 Google Scholar
  36. 36.
    Choi HJ, Lee DH, Jeon HJ, Kim DS, Lee YH, Oh T (2014) Transcription factor 7-like 2 (TCF7L2) gene polymorphism rs7903146 is associated with stroke in type 2 diabetes patients with long disease duration. Diabetes Res Clin Pract 103(3):e3–e6.  https://doi.org/10.1016/j.diabres.2013.12.051 Google Scholar
  37. 37.
    Sousa AG, Marquezine GF, Lemos PA, Martinez E, Lopes N, Hueb WA, Krieger JE, Pereira AC (2009) TCF7L2 polymorphism rs7903146 is associated with coronary artery disease severity and mortality. PLoS ONE 4(11):e7697.  https://doi.org/10.1371/journal.pone.0007697 Google Scholar
  38. 38.
    American Diabetes Association (2016) Professional practice committee for the standards of medical care in diabetes-2016. Diabetes Care 39(Suppl 1):S107–S108.  https://doi.org/10.2337/dc16-s018 Google Scholar
  39. 39.
    Boehme AK, Esenwa C, Elkind MS (2017) Stroke risk factors, genetics, and prevention. Circ Res 120(3):472–495.  https://doi.org/10.1161/CIRCRESAHA.116.308398 Google Scholar
  40. 40.
    Ouhaibi-Djellouli H, Mediene-Benchekor S, Lardjam-Hetraf SA, Hamani-Medjaoui I, Meroufel DN, Boulenouar H, Hermant X, Saidi-Mehtar N, Amouyel P, Houti L, Goumidi L, Meirhaeghe A (2014) The TCF7L2 rs7903146 polymorphism, dietary intakes and type 2 diabetes risk in an Algerian population. BMC Genet 15:134.  https://doi.org/10.1186/s12863-014-0134-3 Google Scholar
  41. 41.
    Fisher E, Boeing H, Fritsche A, Doering F, Joost HG, Schulze MB (2009) Whole-grain consumption and transcription factor-7-like 2 (TCF7L2) rs7903146: gene-diet interaction in modulating type 2 diabetes risk. Br J Nutr 101(4):478–481.  https://doi.org/10.1017/S0007114508020369 Google Scholar
  42. 42.
    Lopez-Ortiz MM, Garay-Sevilla ME, Tejero ME, Perez-Luque EL (2016) Analysis of the interaction between transcription factor 7-like 2 genetic variants with nopal and wholegrain fibre intake: effects on anthropometric and metabolic characteristics in type 2 diabetes patients. Br J Nutr 116(6):969–978.  https://doi.org/10.1017/S0007114516002798 Google Scholar
  43. 43.
    Cai J, Zhang Y, Nuli R, Zhang Y, Abudusemaiti M, Kadeer A, Tian X, Xiao H (2019) Interaction between dietary patterns and TCF7L2 polymorphisms on type 2 diabetes mellitus among Uyghur adults in Xinjiang Province, China. Diabetes Metab Syndr Obes 12:239–255.  https://doi.org/10.2147/DMSO.S191759 Google Scholar
  44. 44.
    Hindy G, Mollet IG, Rukh G, Ericson U, Orho-Melander M (2016) Several type 2 diabetes-associated variants in genes annotated to WNT signaling interact with dietary fiber in relation to incidence of type 2 diabetes. Genes Nutr 11:6.  https://doi.org/10.1186/s12263-016-0524-4 Google Scholar
  45. 45.
    Li L, Wang J, Ping Z, Li Y, Wang C, Shi Y, Zhou W, Zhang L (2019) Interaction analysis of gene variants of TCF7L2 and body mass index and waist circumference on type 2 diabetes. Clin Nutr.  https://doi.org/10.1016/j.clnu.2019.01.014 Google Scholar
  46. 46.
    Corella D, Coltell O, Sorli JV, Estruch R, Quiles L, Martinez-Gonzalez MA, Salas-Salvado J, Castaner O, Aros F, Ortega-Calvo M, Serra-Majem L, Gomez-Gracia E, Portoles O, Fiol M, Diez Espino J, Basora J, Fito M, Ros E, Ordovas JM (2016) Polymorphism of the transcription factor 7-like 2 gene (TCF7L2) interacts with obesity on type-2 diabetes in the PREDIMED study emphasizing the heterogeneity of genetic variants in type-2 diabetes risk prediction: time for obesity-specific genetic risk scores. Nutrients 8:12.  https://doi.org/10.3390/nu8120793 Google Scholar
  47. 47.
    Florez JC, Jablonski KA, Bayley N, Pollin TI, de Bakker PI, Shuldiner AR, Knowler WC, Nathan DM, Altshuler D, Diabetes Prevention Program Research G (2006) TCF7L2 polymorphisms and progression to diabetes in the diabetes prevention program. N Engl J Med 355(3):241–250.  https://doi.org/10.1056/nejmoa062418 Google Scholar
  48. 48.
    Tang X, Hu Y, Chen D, Zhan S, Zhang Z, Dou H (2007) The Fangshan/family-based Ischemic stroke study In China (FISSIC) protocol. BMC Med Genet 8:60.  https://doi.org/10.1186/1471-2350-8-60 Google Scholar
  49. 49.
    He L, Tang X, Song Y, Li N, Li J, Zhang Z, Liu J, Yu L, Xu H, Zhang J, Hu Y (2012) Prevalence of cardiovascular disease and risk factors in a rural district of Beijing, China: a population-based survey of 58,308 residents. BMC Public Health 12:34.  https://doi.org/10.1186/1471-2458-12-34 Google Scholar
  50. 50.
    Adams HP Jr, Bendixen BH, Kappelle LJ, Biller J, Love BB, Gordon DL, Marsh EE 3rd (1993) Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke 24(1):35–41Google Scholar
  51. 51.
    Turgeon M, Oualkacha K, Ciampi A, Miftah H, Dehghan G, Zanke BW, Benedet AL, Rosa-Neto P, Greenwood CM, Labbe A, Alzheimer’s Disease Neuroimaging I (2018) Principal component of explained variance: an efficient and optimal data dimension reduction framework for association studies. Stat Methods Med Res 27(5):1331–1350.  https://doi.org/10.1177/0962280216660128 Google Scholar
  52. 52.
    Schaid DJ, Tong X, Larrabee B, Kennedy RB, Poland GA, Sinnwell JP (2016) Statistical methods for testing genetic pleiotropy. Genetics 204(2):483–497.  https://doi.org/10.1534/genetics.116.189308 Google Scholar
  53. 53.
    Li N, van der Sijde MR, LifeLines Cohort Study G, Bakker SJ, Dullaart RP, van der Harst P, Gansevoort RT, Elbers CC, Wijmenga C, Snieder H, Hofker MH, Fu J (2014) Pleiotropic effects of lipid genes on plasma glucose, HbA1c, and HOMA-IR levels. Diabetes 63(9):3149–3158.  https://doi.org/10.2337/db13-1800 Google Scholar
  54. 54.
    Wang L, Gao P, Zhang M, Huang Z, Zhang D, Deng Q, Li Y, Zhao Z, Qin X, Jin D, Zhou M, Tang X, Hu Y, Wang L (2017) Prevalence and ethnic pattern of diabetes and prediabetes in China in 2013. JAMA 317(24):2515–2523.  https://doi.org/10.1001/jama.2017.7596 Google Scholar
  55. 55.
    Wang W, Jiang B, Sun H, Ru X, Sun D, Wang L, Wang L, Jiang Y, Li Y, Wang Y, Chen Z, Wu S, Zhang Y, Wang D, Wang Y, Feigin VL, Investigators NE-C (2017) Prevalence, incidence, and mortality of stroke in China: results from a nationwide population-based survey of 480,687 adults. Circulation 135(8):759–771.  https://doi.org/10.1161/CIRCULATIONAHA.116.025250 Google Scholar
  56. 56.
    Wigginton JE, Cutler DJ, Abecasis GR (2005) A note on exact tests of Hardy–Weinberg equilibrium. Am J Hum Genet 76(5):887–893.  https://doi.org/10.1086/429864 Google Scholar
  57. 57.
    Cheng YC, Stanne TM, Giese AK, Ho WK, Traylor M, Amouyel P, Holliday EG, Malik R, Xu H, Kittner SJ, Cole JW, O’Connell JR, Danesh J, Rasheed A, Zhao W, Engelter S, Grond-Ginsbach C, Kamatani Y, Lathrop M, Leys D, Thijs V, Metso TM, Tatlisumak T, Pezzini A, Parati EA, Norrving B, Bevan S, Rothwell PM, Sudlow C, Slowik A, Lindgren A, Walters MR, Consortium W, Jannes J, Shen J, Crosslin D, Doheny K, Laurie CC, Kanse SM, Bis JC, Fornage M, Mosley TH, Hopewell JC, Strauch K, Muller-Nurasyid M, Gieger C, Waldenberger M, Peters A, Meisinger C, Ikram MA, Longstreth WT Jr, Meschia JF, Seshadri S, Sharma P, Worrall B, Jern C, Levi C, Dichgans M, Boncoraglio GB, Markus HS, Debette S, Rolfs A, Saleheen D, Mitchell BD (2016) Genome-wide association analysis of young-onset stroke identifies a locus on chromosome 10q25 near HABP2. Stroke 47(2):307–316.  https://doi.org/10.1161/strokeaha.115.011328 Google Scholar
  58. 58.
    Muendlein A, Saely CH, Geller-Rhomberg S, Sonderegger G, Rein P, Winder T, Beer S, Vonbank A, Drexel H (2011) Single nucleotide polymorphisms of TCF7L2 are linked to diabetic coronary atherosclerosis. PLoS ONE 6(3):e17978.  https://doi.org/10.1371/journal.pone.0017978 Google Scholar
  59. 59.
    Delgado-Lista J, Perez-Martinez P, Garcia-Rios A, Phillips CM, Williams CM, Gulseth HL, Helal O, Blaak EE, Kiec-Wilk B, Basu S, Drevon CA, Defoort C, Saris WH, Wybranska I, Riserus U, Lovegrove JA, Roche HM, Lopez-Miranda J (2011) Pleiotropic effects of TCF7L2 gene variants and its modulation in the metabolic syndrome: from the LIPGENE study. Atherosclerosis 214(1):110–116.  https://doi.org/10.1016/j.atherosclerosis.2010.10.027 Google Scholar
  60. 60.
    Perez-Martinez P, Perez-Caballero AI, Garcia-Rios A, Yubero-Serrano EM, Camargo A, Gomez-Luna MJ, Marin C, Gomez-Luna P, Dembinska-Kiec A, Rodriguez-Cantalejo F, Tinahones FJ, Roche HM, Perez-Jimenez F, Lopez-Miranda J, Delgado-Lista J (2012) Effects of rs7903146 variation in the Tcf7l2 gene in the lipid metabolism of three different populations. PLoS ONE 7(8):e43390.  https://doi.org/10.1371/journal.pone.0043390 Google Scholar
  61. 61.
    Pineda-Tenor D, Berenguer J, Jimenez-Sousa MA, Carrero A, Garcia-Alvarez M, Aldamiz-Echevarria T, Garcia-Broncano P, Diez C, Guzman-Fulgencio M, Fernandez-Rodriguez A, Resino S (2015) rs7903146 polymorphism at transcription factor 7 like 2 gene is associated with total cholesterol and lipoprotein profile in HIV/hepatitis C virus-coinfected patients. AIDS Res Hum Retroviruses 31(3):326–334.  https://doi.org/10.1089/aid.2014.0195 Google Scholar
  62. 62.
    Desmarchelier C, Martin JC, Planells R, Gastaldi M, Nowicki M, Goncalves A, Valero R, Lairon D, Borel P (2014) The postprandial chylomicron triacylglycerol response to dietary fat in healthy male adults is significantly explained by a combination of single nucleotide polymorphisms in genes involved in triacylglycerol metabolism. J Clin Endocrinol Metab 99(3):E484–E488.  https://doi.org/10.1210/jc.2013-3962 Google Scholar
  63. 63.
    Yan Y, North KE, Heiss G, Klein R, Girman CJ, Lange EM, Pankow JS, Brancati FL, Boerwinkle E (2010) Transcription factor 7-like 2 (TCF7L2) polymorphism and context-specific risk of impaired fasting glucose in African American and Caucasian adults: the atherosclerosis risk in communities (ARIC) study. Diabetes Metab Res Rev 26(5):371–377.  https://doi.org/10.1002/dmrr.1087 Google Scholar
  64. 64.
    Ros E, Martinez-Gonzalez MA, Estruch R, Salas-Salvado J, Fito M, Martinez JA, Corella D (2014) Mediterranean diet and cardiovascular health: Teachings of the PREDIMED study. Adv Nutr 5(3):330S–336S.  https://doi.org/10.3945/an.113.005389 Google Scholar
  65. 65.
    Warodomwichit D, Arnett DK, Kabagambe EK, Tsai MY, Hixson JE, Straka RJ, Province M, An P, Lai CQ, Borecki I, Ordovas JM (2009) Polyunsaturated fatty acids modulate the effect of TCF7L2 gene variants on postprandial lipemia. J Nutr 139(3):439–446.  https://doi.org/10.3945/jn.108.096461 Google Scholar
  66. 66.
    Sherzai A, Heim LT, Boothby C, Sherzai AD (2012) Stroke, food groups, and dietary patterns: a systematic review. Nutr Rev 70(8):423–435.  https://doi.org/10.1111/j.1753-4887.2012.00490.x Google Scholar
  67. 67.
    Kucharska-Newton AM, Monda KL, Bielinski SJ, Boerwinkle E, Rea TD, Rosamond WD, Pankow JS, Kottgen A, Heiss G, North KE (2010) Role of BMI in the association of the TCF7L2 rs7903146 variant with coronary heart disease: the atherosclerosis risk in communities (ARIC) study. J Obes.  https://doi.org/10.1155/2010/651903 Google Scholar
  68. 68.
    Polfus LM, Smith JA, Shimmin LC, Bielak LF, Morrison AC, Kardia SL, Peyser PA, Hixson JE (2013) Genome-wide association study of gene by smoking interactions in coronary artery calcification. PLoS ONE 8(10):e74642.  https://doi.org/10.1371/journal.pone.0074642 Google Scholar
  69. 69.
    McStea M, McGeechan K, Kamaruzzaman SB, Rajasuriar R, Tan MP (2016) Defining metabolic syndrome and factors associated with metabolic syndrome in a poly-pharmaceutical population. Postgrad Med 128(8):797–804.  https://doi.org/10.1080/00325481.2016.1229103 Google Scholar
  70. 70.
    Oktavianthi S, Saraswati MR, Suastika K, Dwipayana P, Sulfianti A, Hayati RF, Trimarsanto H, Febinia CA, Sudoyo H, Malik SG (2018) Transcription factor 7-like 2 single nucleotide polymorphisms are associated with lipid profile in the Balinese. Mol Biol Rep 45(5):1135–1143.  https://doi.org/10.1007/s11033-018-4265-x Google Scholar
  71. 71.
    Esenwa CC, Elkind MS (2016) Inflammatory risk factors, biomarkers and associated therapy in ischaemic stroke. Nat Rev Neurol 12(10):594–604.  https://doi.org/10.1038/nrneurol.2016.125 Google Scholar
  72. 72.
    Collaboration CRPCHDG, Wensley F, Gao P, Burgess S, Kaptoge S, Di Angelantonio E, Shah T, Engert JC, Clarke R, Davey-Smith G, Nordestgaard BG, Saleheen D, Samani NJ, Sandhu M, Anand S, Pepys MB, Smeeth L, Whittaker J, Casas JP, Thompson SG, Hingorani AD, Danesh J (2011) Association between C reactive protein and coronary heart disease: mendelian randomisation analysis based on individual participant data. BMJ 342:d548.  https://doi.org/10.1136/bmj.d548 Google Scholar
  73. 73.
    Kang X, Hou A, Wang R, Liu D, Xiang W, Xie Q, Zhang B, Gan L, Zheng W, Miao H (2016) Macrophage TCF-4 co-activates p65 to potentiate chronic inflammation and insulin resistance in mice. Clin Sci 130(14):1257–1268.  https://doi.org/10.1042/CS20160192 Google Scholar
  74. 74.
    Kabagambe EK, Glasser SP, Ordovas JM, Warodomwichit D, Tsai MY, Hopkins PN, Borecki IB, Wojczynski M, Arnett DK (2009) TCF7L2 polymorphisms and inflammatory markers before and after treatment with fenofibrate. Diabetol Metab Syndr 1(1):16.  https://doi.org/10.1186/1758-5996-1-16 Google Scholar
  75. 75.
    Hanson E, Kanse SM, Joshi A, Jood K, Nilsson S, Blomstrand C, Jern C (2012) Plasma factor VII-activating protease antigen levels and activity are increased in ischemic stroke. J Thromb Haemost 10(5):848–856.  https://doi.org/10.1111/j.1538-7836.2012.04692.x Google Scholar
  76. 76.
    Hu X, Zan X, Xie Z, Li Y, Lin S, Li H, You C (2017) Association between plasminogen activator inhibitor-1 genetic polymorphisms and stroke susceptibility. Mol Neurobiol 54(1):328–341.  https://doi.org/10.1007/s12035-015-9549-8 Google Scholar
  77. 77.
    Denorme F, Wyseure T, Peeters M, Vandeputte N, Gils A, Deckmyn H, Vanhoorelbeke K, Declerck PJ, De Meyer SF (2016) Inhibition of Thrombin-activatable fibrinolysis inhibitor and plasminogen activator inhibitor-1 reduces ischemic brain damage in mice. Stroke 47(9):2419–2422.  https://doi.org/10.1161/STROKEAHA.116.014091 Google Scholar
  78. 78.
    Dai H, Shi J, He Q, Sun H (2017) Dose–response relationship between thrombin-activatable fibrinolysis inhibitor (TAFI) and stroke: a chinese case–control study. Med Sci Monit 23:4376–4381Google Scholar
  79. 79.
    Hippisley-Cox J, Coupland C (2017) Development and validation of QDiabetes-2018 risk prediction algorithm to estimate future risk of type 2 diabetes: cohort study. BMJ 359:j5019.  https://doi.org/10.1136/bmj.j5019 Google Scholar
  80. 80.
    Eckel RH, Grundy SM, Zimmet PZ (2005) The metabolic syndrome. Lancet 365(9468):1415–1428.  https://doi.org/10.1016/S0140-6736(05)66378-7 Google Scholar
  81. 81.
    Knott C, Bell S, Britton A (2015) Alcohol consumption and the risk of type 2 diabetes: a systematic review and dose–response meta-analysis of more than 19 million individuals from 38 observational studies. Diabetes Care 38(9):1804–1812.  https://doi.org/10.2337/dc15-0710 Google Scholar
  82. 82.
    Bhat VM, Cole JW, Sorkin JD, Wozniak MA, Malarcher AM, Giles WH, Stern BJ, Kittner SJ (2008) Dose-response relationship between cigarette smoking and risk of ischemic stroke in young women. Stroke 39(9):2439–2443.  https://doi.org/10.1161/STROKEAHA.107.510073 Google Scholar
  83. 83.
    Afshin A, Micha R, Khatibzadeh S, Mozaffarian D (2014) Consumption of nuts and legumes and risk of incident ischemic heart disease, stroke, and diabetes: a systematic review and meta-analysis. Am J Clin Nutr 100(1):278–288.  https://doi.org/10.3945/ajcn.113.076901 Google Scholar
  84. 84.
    Capes SE, Hunt D, Malmberg K, Pathak P, Gerstein HC (2001) Stress hyperglycemia and prognosis of stroke in nondiabetic and diabetic patients: a systematic overview. Stroke 32(10):2426–2432Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jing Song
    • 1
  • Yiqun Wu
    • 1
  • Juan Juan
    • 2
  • Yaying Cao
    • 1
  • Tao Wu
    • 1
  • Yonghua Hu
    • 1
    Email author
  1. 1.Department of Epidemiology and Biostatistics, School of Public HealthPeking UniversityBeijingChina
  2. 2.Department of Obstetrics and GynecologyPeking University First HospitalBeijingChina

Personalised recommendations