Variation in platelet expression of FcγRIIa after myocardial infarction

  • Sean R. McMahon
  • Sreedivya Chava
  • Heidi S. Taatjes-Sommer
  • Sean Meagher
  • Kathleen E. Brummel-Ziedins
  • David J. SchneiderEmail author


FcγRIIa amplifies platelet activation and greater platelet expression of FcγRIIa identifies patients at greater risk of subsequent cardiovascular events. Thus, platelet expression of FcγRIIa may be useful to guide therapy. Because platelet function tests are impacted by preparative procedures and substantial intra-individual variability, we examined the impact of these factors on platelet expression of FcγRIIa in blood from healthy subjects and in patients after myocardial infarction (MI). Platelet expression of FcγRIIa was quantified with the use of flow cytometry. Blood was taken from healthy subjects and 114 patients after a MI in whom platelet expression of FcγRIIa was quantified before discharge and at 6 ± 1 months. Neither anticoagulants nor the antiplatelet agent cangrelor changed platelet expression of FcγRIIa. Intra-individual variation in platelet FcγRIIa expression was 8.5% ± 5% over the course of 1 month in healthy subjects. Platelet FcγRIIa expression was within 20% of the baseline value after 6 months in 71% of patients after MI. In summary, because FcγRIIa is a protein on the surface of platelets, assay conditions and antiplatelet agents do not change expression. Intra-individual variability in platelet expression of FcγRIIa is modest. Accordingly, platelet expression of FcγRIIa is a marker of increased platelet reactivity that can be reliably and repeatedly measured.

Clinical Trial Registration: NCT02505217


Biomarker Platelet Intra-individual variability Cardiovascular 



This study was supported in part by a Grant from Janssen Pharmaceuticals, LLC.

Compliance with ethical standards

Conflict of interest

David J Schneider is named inventor on a pending patent application (Application No.: 14/403,337) that proposes the use of FcγRIIa for assaying platelet reactivity and treatment selection. The remaining authors have no disclosure.


  1. 1.
    Boylan B, Gao C, Rathore V, Gill JC, Newman DK, Newman PJ (2008) Identification of FcgammaRIIa as the ITAM-bearing receptor mediating alphaIIbbeta3 outside-in integrin signaling in human platelets. Blood 112:2780–2786CrossRefGoogle Scholar
  2. 2.
    Lova P, Paganini S, Sinigaglia F, Balduini C, Torti M (2002) A Gi-dependent pathway is required for activation of the small GTPase Rap1B in human platelets. J Biol Chem 277:12009–12015CrossRefGoogle Scholar
  3. 3.
    Calverley DC, Brass E, Hacker MR, Tsao-Wei DD, Espina BM, Pullarkat VA, Hodis HN, Groshen S (2002) Potential role of platelet FcgammaRIIA in collagen-mediated platelet activation associated with atherothrombosis. Atherosclerosis 164:261–267CrossRefGoogle Scholar
  4. 4.
    Schneider DJ, McMahon SR, Chava S, Taatjes-Sommer HS, Meagher S, Ehle GL, Brummel-Ziedins KE (2018) FcγRIIa: a new cardiovascular risk marker. J Am Coll Cardiol 72:237–238CrossRefGoogle Scholar
  5. 5.
    Breet NJ, van Werkum JW, Bouman HJ, Kelder JC, Ruven HJ, Bal ET, Deneer VH, Harmsze AM, van der Heyden JA, Rensing BJ, Suttorp MJ, Hackeng CM, ten Berg JM (2010) Comparison of platelet function tests in predicting clinical outcome in patients undergoing coronary stent implantation. JAMA 303:754–762CrossRefGoogle Scholar
  6. 6.
    Wisman PP, Roest M, Asselbergs FW, de Groot PG, Moll FL, van der Graaf Y, de Borst GJ (2014) Platelet-reactivity tests identify patients at risk of secondary cardiovascular events: a systematic review and meta-analysis. J Thromb Haemost 12:736–747CrossRefGoogle Scholar
  7. 7.
    Price MJ, Berger PB, Teirstein PS, Tanguay JF, Angiolillo DJ, Spriggs D, Puri S, Robbins M, Garratt KN, Bertrand OF, Stillabower ME, Aragon JR, Kandzari DE, Stinis CT, Lee MS, Manoukian SV, Cannon CP, Schork NJ, Topol EJ, GRAVITAS Investigators (2011) Standard- vs high-dose clopidogrel based on platelet function testing after percutaneous coronary intervention: the GRAVITAS randomized trial. JAMA 305:1097–1105CrossRefGoogle Scholar
  8. 8.
    Collet JP, Cuisset T, Rangé G, Cayla G, Elhadad S, Pouillot C, Henry P, Motreff P, Carrié D, Boueri Z, Belle L, Van Belle E, Rousseau H, Aubry P, Monségu J, Sabouret P, O’Connor SA, Abtan J, Kerneis M, Saint-Etienne C, Barthélémy O, Beygui F, Silvain J, Vicaut E, Montalescot G, ARCTIC Investigators (2012) Bedside monitoring to adjust antiplatelet therapy for coronary stenting. N Engl J Med 367:2100–2109CrossRefGoogle Scholar
  9. 9.
    Frelinger AL III, Bhatt DL, Lee RD, Mulford DJ, Wu J, Nudurupati S, Nigam A, Lampa M, Brooks JK, Barnard MR, Michelson AD (2013) Clopidogrel pharmacokinetics and pharmacodynamics vary widely despite exclusion or control of polymorphisms (CYP2C19, ABCB1, PON1), noncompliance, diet, smoking, co-medications (including proton pump inhibitors), and pre-existent variability in platelet function. J Am Coll Cardiol 61:872–879CrossRefGoogle Scholar
  10. 10.
    Hochholzer W, Ruff CT, Mesa RA, Mattimore JF, Cyr JF, Lei L, Frelinger AL III, Michelson AD, Berg DD, Angiolillo DJ, O’Donoghue ML, Sabatine MS, Mega JL (2014) Variability of individual platelet reactivity over time in patients treated with clopidogrel: insights from the ELEVATE-TIMI 56 trial. J Am Coll Cardiol 64:361–368CrossRefGoogle Scholar
  11. 11.
    Nührenberg TG, Stratz C, Leggewie S, Hochholzer W, Valina CM, Gick M, Kirtane AJ, Stone GW, Neumann FJ, Trenk D (2015) Temporal variability in the antiplatelet effects of clopidogrel and aspirin after elective drug-eluting stent implantation. An ADAPT-DES substudy. Thromb Haemost 114:1020–1027CrossRefGoogle Scholar
  12. 12.
    Schneider DJ, Tracy PB, Mann KG, Sobel BE (1997) Differential effects of anticoagulants on the activation of platelets ex vivo. Circulation 96:2877–2883CrossRefGoogle Scholar
  13. 13.
    Madsen NJ, Holmes CE, Serrano FA, Sobel BE, Schneider DJ (2007) Influence of preparative procedures on assay of platelet function and apparent effects of antiplatelet agents. Am J Cardiol 100:722–727CrossRefGoogle Scholar
  14. 14.
    Lippi G, Ippolito L, Zobbi V, Sandei F, Favaloro EJ (2013) Sample collection and platelet function testing: influence of vacuum or aspiration principle on PFA-100 test results. Blood Coagul Fibrinolysis 24:666–669CrossRefGoogle Scholar
  15. 15.
    Brezinski DA, Tofler GH, Muller JE, Pohjola-Sintonen S, Willich SN, Schafer AI, Czeisler CA, Williams GH (1988) Morning increase in platelet aggregability. Association with assumption of the upright posture. Circulation 78:35–40CrossRefGoogle Scholar
  16. 16.
    Kay S, Herishanu Y, Pick M, Rogowski O, Baron S, Naparstek E, Polliack A, Deutsch VR (2006) Quantitative flow cytometry of ZAP-70 levels in chronic lymphocytic leukemia using molecules of equivalent soluble fluorochrome. Cytometry 70B:218–226CrossRefGoogle Scholar
  17. 17.
    Quadrini KJ, Hegelund AC, Cortes KE, Xue C, Kennelly SM, Ji H, Högerkorp C-M, Mc Closky TW (2016) Validation of a flow cytometry-based assay to assess C5aR receptor occupancy on neutrophils and monocytes for use in drug development. Cytometry B 90B:177–190CrossRefGoogle Scholar
  18. 18.
    Rand MD, Lock JB, van’t Veer C, Gaffney DP, Mann KG (1996) Blood clotting in minimally altered whole blood. Blood 88:001–014Google Scholar
  19. 19.
    Schneider DJ, Sobel BE (2009) Streamlining the design of promising clinical trials: in vitro testing of antithrombotic regimens and multiple agonists of platelet activation. Coron Artery Dis 20:175–178CrossRefGoogle Scholar
  20. 20.
    Karas SP, Rosse WF, Kurlander RJ (1982) Characterization of the IgG-Fc receptor on human platelets. Blood 60:1277–1282Google Scholar
  21. 21.
    Cox D, Kerrigan SW, Watson SP (2011) Platelets and the innate immune system: mechanisms of bacterial-induced platelet activation. J Thromb Haemost 9:1097–1107CrossRefGoogle Scholar
  22. 22.
    Arman M, Krauel K, Tilley DO, Weber C, Cox D, Greinacher A, Kerrigan SW, Watson SP (2014) Amplification of bacteria-induced platelet activation is triggered by FcγRIIA, integrin αIIbβ3, and platelet factor 4. Blood 123:3166–3174CrossRefGoogle Scholar
  23. 23.
    Kelton JG, Sheridan D, Santos A, Smith J, Steeves K, Smith C, Brown C, Murphy WG (1988) Heparin-induced thrombocytopenia: laboratory studies. Blood 72:925–930Google Scholar
  24. 24.
    Reilly MP, Taylor SM, Hartman NK, Arepally GM, Sachais BS, Cines DB, Poncz M, McKenzie SE (2001) Heparin-induced thrombocytopenia/thrombosis in a transgenic mouse model requires human platelet factor 4 and platelet activation through FcgammaRIIA. Blood 98:2442–2447CrossRefGoogle Scholar
  25. 25.
    Zhi H, Rauova L, Hayes V, Gao C, Boylan B, Newman DK, McKenzie SE, Cooley BC, Poncz M, Newman PJ (2013) Cooperative integrin/ITAM signaling in platelets enhances thrombus formation in vitro and in vivo. Blood 121:1858–1867CrossRefGoogle Scholar
  26. 26.
    Braune S, Walter M, Schulze F, Lendlein A, Jung F (2014) Changes in platelet morphology and function during 24 hours of storage. Clin Hemorheol Microcirc 58:159–170Google Scholar
  27. 27.
    Schneider DJ, Taatjes-Sommer HS (2009) Augmentation of megakaryocyte expression of FcgammaRIIa by interferon gamma. Arterioscler Thromb Vasc Biol 29:1138–1143CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Sean R. McMahon
    • 1
    • 2
  • Sreedivya Chava
    • 1
    • 2
  • Heidi S. Taatjes-Sommer
    • 1
    • 2
  • Sean Meagher
    • 1
    • 2
  • Kathleen E. Brummel-Ziedins
    • 1
    • 2
  • David J. Schneider
    • 1
    • 2
    Email author
  1. 1.Departments of Medicine and BiochemistryThe University of VermontBurlingtonUSA
  2. 2.Cardiovascular Research InstituteThe University of VermontBurlingtonUSA

Personalised recommendations