Advertisement

Long-term performance of risk scores for venous thromboembolism in ambulatory cancer patients

  • Marcello Di NisioEmail author
  • Nick van Es
  • Ludovica Rotunno
  • Nelson Anzoletti
  • Leonardo Falcone
  • Michele De Tursi
  • Clara Natoli
  • Nicola Tinari
  • Ilaria Cavallo
  • Emanuele Valeriani
  • Matteo Candeloro
  • Maria Domenica Guglielmi
  • Anne Wilhelmina Saskia Rutjes
  • Ettore Porreca
Article
  • 71 Downloads

Abstract

The long-term performance of prediction scores for venous thromboembolism (VTE) in cancer patients has been poorly investigated. We evaluated the discriminatory performance of the Khorana, PROTECHT, CONKO, and ONKOTEV scores for the first 3–6 months and for 12 months, and re-assessed scores after 3–6 months to determine the influence of variations in patients’ risk classification on performance. Retrospective cohort of ambulatory patients with active cancer who were scheduled to receive first or new line of chemotherapy. The primary outcome was symptomatic or incidental VTE. A total of 776 patients were included of whom 540 (70%) had distant metastases. The time-dependent c-statistics of Khorana, PROTECHT, CONKO, and ONKOTEV scores at 6 months were 0.61 (95% CI 0.56 to 0.66), 0.61 (95% CI 0.55 to 0.66), 0.60 (95% CI 0.54 to 0.66), and 0.59 (0.52 to 0.66), respectively, with a tendency to decrease during follow-up. None of the scores discriminated between high and low risk patients at the conventional 3-point positivity threshold. The use of a 2-point positivity threshold improved performance of all scores and captured a higher proportion of VTE. The accuracy of risk scores re-assessed at 3–6 months was modest. The Khorana, PROTECHT, CONKO, and ONKOTEV scores are not sufficiently accurate when used at a conventional threshold of 3 points. Performance improves at positivity threshold of 2 points, as evaluated in recent randomized studies on VTE prophylaxis. Score accuracy tends to decrease over time suggesting the need of periodic re-evaluation to estimate possible variation of risk.

Keywords

Neoplasms Venous thrombosis Venous thromboembolism Predictive value of tests Biomarkers 

Notes

Author contributions

Concept and design: MDN, EP. Interpretation of data, critical writing or revising the intellectual content, and final approval of the version to be published: MDN, NvE, LR, NA, LF, MDT, CN, NT, IC, EV, MC, AWSR, EP.

Compliance with ethical standards

Conflict of interest

None of the authors have potential conflicts of interest to declare in relation to the current work.

Supplementary material

11239_2019_1845_MOESM1_ESM.docx (79 kb)
Supplementary material 1 (DOCX 79 KB)

References

  1. 1.
    Timp JF, Braekkan SK, Versteeg HH, Cannegieter SC (2013) Epidemiology of cancer-associated venous thrombosis. Blood 122:1712–1723CrossRefPubMedGoogle Scholar
  2. 2.
    Khorana AA, Francis CW, Culakova E, Lyman GH (2005) Risk factors for chemotherapy-associated venous thromboembolism in a prospective observational study. Cancer 104:2822–2829CrossRefPubMedGoogle Scholar
  3. 3.
    Di Nisio M, Porreca E, Candeloro M, De Tursi M, Russi I, Rutjes AW (2016) Primary prophylaxis for venous thromboembolism in ambulatory cancer patients receiving chemotherapy. Cochrane Database Syst Rev 12:CD008500PubMedGoogle Scholar
  4. 4.
    Khorana AA, Francis CW (2018) Risk prediction of cancer-associated thrombosis: appraising the first decade and developing the future. Thromb Res 164(Suppl 1):S70–S76CrossRefPubMedGoogle Scholar
  5. 5.
    Pabinger I, Thaler J, Ay C (2013) Biomarkers for prediction of venous thromboembolism in cancer. Blood 122:2011–2018CrossRefPubMedGoogle Scholar
  6. 6.
    Khorana AA, Kuderer NM, Culakova E, Lyman GH, Francis CW (2008) Development and validation of a predictive model for chemotherapy-associated thrombosis. Blood 111:4902–4907CrossRefPubMedGoogle Scholar
  7. 7.
    van Es N, Di Nisio M, Cesarman G, Kleinjan A, Otten HM, Mahé I, Wilts IT, Twint DC, Porreca E, Arrieta O, Stépanian A, Smit K, De Tursi M, Bleker SM, Bossuyt PM, Nieuwland R, Kamphuisen PW, Büller HR (2017) Comparison of risk prediction scores for venous thromboembolism in cancer patients: a prospective cohort study. Haematologica 102:1494–1501CrossRefPubMedGoogle Scholar
  8. 8.
    Carrier M, Abou-Nassar K, Mallick R, Tagalakis V, Shivakumar S, Schattner A, Kuruvilla P, Hill D, Spadafora S, Marquis K, Trinkaus M, Tomiak A, Lee AYY, Gross PL, Lazo-Langner A, El-Maraghi R, Goss G, Le Gal G, Stewart D, Ramsay T, Rodger M, Witham D, Wells PS, AVERT Investigators (2019) Apixaban to prevent venous thromboembolism in patients with cancer. N Engl J Med 380:711–719CrossRefPubMedGoogle Scholar
  9. 9.
    Khorana AA, Soff GA, Kakkar AK, Vadhan-Raj S, Riess H, Wun T, Streiff MB, Garcia DA, Liebman HA, Belani C, O’Reilly EM, Patel JN, Yimer HA, Wildgoose P, Burton P, Vijapurkar U, Kaul S, Eikelboom J, McBane RD, Bauer KA, Kuderer NM, Lyman GH, CASSINI Investigators (2019) Rivaroxaban thromboprophylaxis in high-risk ambulatory cancer patients receiving systemic therapy: results of a randomized clinical trial. N Engl J Med 380:720–728CrossRefPubMedGoogle Scholar
  10. 10.
    Mulder FI, Candeloro M, van Es N, Di Nisio M, Buller HR, Kamphuisen PW (2019) Can we use the Khorana risk score to predict venous thromboembolism in patients with cancer? A systematic review and meta-analysis. Haematologica.  https://doi.org/10.3324/haematol.2018.209114 Google Scholar
  11. 11.
    Ay C, Dunkler D, Marosi C, Chiriac AL, Vormittag R, Simanek R, Quehenberger P, Zielinski C, Pabinger I (2010) Prediction of venous thromboembolism in cancer patients. Blood 116:5377–5382CrossRefPubMedGoogle Scholar
  12. 12.
    Verso M, Agnelli G, Barni S, Gasparini G, LaBianca R (2012) A modified Khorana risk assessment score for venous thromboembolism in cancer patients receiving chemotherapy: the Protecht score. Intern Emerg Med 7:291–292CrossRefPubMedGoogle Scholar
  13. 13.
    Pelzer U, Opitz B, Deutschinoff G, Stauch M, Reitzig PC, Hahnfeld S, Müller L, Grunewald M, Stieler JM, Sinn M, Denecke T, Bischoff S, Oettle H, Dörken B, Riess H (2015) Efficacy of Prophylactic low-molecular weight heparin for ambulatory patients with advanced pancreatic cancer: outcomes from the CONKO-004 Trial. J Clin Oncol 33:2028–2034CrossRefPubMedGoogle Scholar
  14. 14.
    Cella CA, Di Minno G, Carlomagno C, Arcopinto M, Cerbone AM, Matano E, Tufano A, Lordick F, De Simone B, Muehlberg KS, Bruzzese D, Attademo L, Arturo C, Sodano M, Moretto R, La Fata E, De Placido S (2017) Preventing venous thromboembolism in ambulatory cancer patients: the ONKOTEV study. Oncologist 22:601–608CrossRefPubMedGoogle Scholar
  15. 15.
    Di Nisio M, van Es N, Büller HR (2016) Deep vein thrombosis and pulmonary embolism. Lancet 388(10063):3060–3073CrossRefPubMedGoogle Scholar
  16. 16.
    Khorana AA, O’Connell C, Agnelli G, Liebman HA, Lee AYY, On Behalf of the Subcommittee on Hemostasis and Malignancy of the SSC of the ISTH. (2012) Incidental venous thromboembolism in oncology patients. J Thromb Haemost 10: 2602–2604CrossRefPubMedGoogle Scholar
  17. 17.
    Schulman S, Kearon C, Subcommittee on Control of Anticoagulation of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis (2005) Definition of major bleeding in clinical investigations of antihemostatic medicinal products in non-surgical patients. J Thromb Haemost 3:692–694CrossRefPubMedGoogle Scholar
  18. 18.
    Kaatz S, Ahmad D, Spyropoulos AC, Schulman S, Subcommittee on Control of Anticoagulation (2015) Definition of clinically relevant non-major bleeding in studies of anticoagulants in atrial fibrillation and venous thromboembolic disease in non-surgical patients: communication from the SSC of the ISTH. J Thromb Haemost 13:2119–2126CrossRefPubMedGoogle Scholar
  19. 19.
    Gerotziafas GT, Taher A, Abdel-Razeq H, AboElnazar E, Spyropoulos AC, El Shemmari S, Larsen AK, Elalamy I, COMPASS–CAT Working Group (2017) A predictive score for thrombosis associated with breast, colorectal, lung, or ovarian cancer: the prospective COMPASS-cancer-associated thrombosis study. Oncologist 22:1222–1231CrossRefPubMedGoogle Scholar
  20. 20.
    Pabinger I, van Es N, Heinze G, Posch F, Riedl J, Reitter EM, Di Nisio M, Cesarman-Maus G, Kraaijpoel N, Zielinski CC, Büller HR, Ay C (2018) A clinical prediction model for cancer-associated venous thromboembolism: a development and validation study in two independent prospective cohorts. Lancet Haematol 5:e289–e298CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Marcello Di Nisio
    • 1
    • 2
    Email author
  • Nick van Es
    • 1
  • Ludovica Rotunno
    • 3
  • Nelson Anzoletti
    • 3
  • Leonardo Falcone
    • 3
  • Michele De Tursi
    • 4
  • Clara Natoli
    • 4
  • Nicola Tinari
    • 4
  • Ilaria Cavallo
    • 3
  • Emanuele Valeriani
    • 3
  • Matteo Candeloro
    • 3
  • Maria Domenica Guglielmi
    • 3
  • Anne Wilhelmina Saskia Rutjes
    • 5
    • 6
  • Ettore Porreca
    • 4
  1. 1.Department of Vascular MedicineAmsterdam University Medical Center, Location AMCAmsterdamThe Netherlands
  2. 2.Department of Medicine and Ageing SciencesUniversity G. D’Annunzio, Chieti-PescaraChietiItaly
  3. 3.Department of Internal MedicineOspedale SS.ma AnnunziataChietiItaly
  4. 4.Department of Medical, Oral and Biotechnological SciencesGabriele D’Annunzio UniversityChietiItaly
  5. 5.Institute of Primary Health Care (BIHAM)University of BernBernSwitzerland
  6. 6.Institute of Social and Preventive Medicine (ISPM)University of BernBernSwitzerland

Personalised recommendations