Journal of Thrombosis and Thrombolysis

, Volume 32, Issue 2, pp 158–166 | Cite as

The role of PGE2 in human atherosclerotic plaque on platelet EP3 and EP4 receptor activation and platelet function in whole blood

  • Lisa J. Schober
  • Anna L. Khandoga
  • Suman Dwivedi
  • Sandra M. Penz
  • Takayuki Maruyama
  • Richard Brandl
  • Wolfgang SiessEmail author


Atherosclerosis has an important inflammatory component. Macrophages accumulating in atherosclerotic arteries produce prostaglandin E2 (PGE2), a main inflammatory mediator. Platelets express inhibitory receptors (EP2, EP4) and a stimulatory receptor (EP3) for this prostanoid. Recently, it has been reported in ApoE−/− mice that PGE2 accumulating in inflammatory atherosclerotic lesions might contribute to atherothrombosis after plaque rupture by activating platelet EP3, and EP3 blockade has been proposed to be a promising new approach in anti-thrombotic therapy. The aim of our investigation was to study the role of PGE2 in human atherosclerotic plaques on human platelet function and thrombus formation. Plaque PGE2 might either activate or inhibit platelets depending on stimulation of either EP3 or EP4, respectively. We found that the two EP3-antagonists AE5-599 (300 nM) and AE3-240 (300 nM) specifically and completely inhibited the synergistic effect of the EP3-agonist sulprostone on U46619-induced platelet aggregation in blood. However, these two EP3-antagonists neither inhibited atherosclerotic plaque-induced platelet aggregation, GPIIb/IIIa exposure, dense and alpha granule secretion in blood nor reduced plaque-induced platelet thrombus formation under arterial flow. The EP4-antagonist AE3-208 (1–3 μM) potentiated in combination with PGE2 (1 μM) ADP-induced aggregation, demonstrating that PGE2 enhances platelet aggregation when the inhibitory EP4-receptor is inactivated. However, plaque-induced platelet aggregation was not augmented after platelet pre-treatment with AE3-208, indicating that plaque PGE2 does not stimulate the EP4-receptor. We found that PGE2 was present in plaques only at very low levels (15 pg PGE2/mg plaque). We conclude that PGE2 in human atherosclerotic lesions does not modulate (i.e. stimulate or inhibit) atherothrombosis in blood after plaque rupture.


Platelets Atherosclerotic plaque Thrombus Prostaglandin E2 EP3-receptor EP4-receptor 



The study was supported by grants from the Deutsche Forschungsgemeinschaft (DFG Si 274/9), the August-Lenz-Stiftung, the University of Munich (Förderprogramm für Forschung und Lehre der LMU; Reg-No. 86/2008 to L.J.S.), the Bayern University (the Graduate Program of the “Bayerische Eliteförderungsgesetz BayEFG” to A.L.K.), and the Hella-Langer-Stiftung (S.M.P.). The technical assistance of Kathrin von Oheimb, Barbara Böhlig, Brigitte Zimmer und Diana Wagner is greatly appreciated. The results are part of the doctoral thesis of L.J.S. at the University of Munich.

Supplementary material

Supplementary material 1 (MPG 3970 kb)

Supplementary material 2 (MPG 9336 kb)

11239_2011_577_MOESM3_ESM.doc (24 kb)
Supplementary material 3 (DOC 24 kb)


  1. 1.
    Ruggeri ZM (2002) Platelets in atherothrombosis. Nat Med 8(11):1227–1234. doi: 10.1038/nm1102-1227 PubMedCrossRefGoogle Scholar
  2. 2.
    Siess W, Zangl KJ, Essler M, Bauer M, Brandl R, Corrinth C, Bittman R, Tigyi G, Aepfelbacher M (1999) Lysophosphatidic acid mediates the rapid activation of platelets and endothelial cells by mildly oxidized low density lipoprotein and accumulates in human atherosclerotic lesions. Proc Natl Acad Sci USA 96(12):6931–6936PubMedCrossRefGoogle Scholar
  3. 3.
    Rother E, Brandl R, Baker DL, Goyal P, Gebhard H, Tigyi G, Siess W (2003) Subtype-selective antagonists of lysophosphatidic acid receptors inhibit platelet activation triggered by the lipid core of atherosclerotic plaques. Circulation 108(6):741–747. doi: 10.1161/01.CIR.0000083715.37658.C4 PubMedCrossRefGoogle Scholar
  4. 4.
    Penz S, Reininger AJ, Brandl R, Goyal P, Rabie T, Bernlochner I, Rother E, Goetz C, Engelmann B, Smethurst PA, Ouwehand WH, Farndale R, Nieswandt B, Siess W (2005) Human atheromatous plaques stimulate thrombus formation by activating platelet glycoprotein VI. FASEB J 19(8):898–909. doi: 10.1096/fj.04-2748com PubMedCrossRefGoogle Scholar
  5. 5.
    Badimon JJ, Lettino M, Toschi V, Fuster V, Berrozpe M, Chesebro JH, Badimon L (1999) Local inhibition of tissue factor reduces the thrombogenicity of disrupted human atherosclerotic plaques: effects of tissue factor pathway inhibitor on plaque thrombogenicity under flow conditions. Circulation 99(14):1780–1787PubMedGoogle Scholar
  6. 6.
    Reininger AJ, Bernlochner I, Penz SM, Ravanat C, Smethurst P, Farndale RW, Gachet C, Brandl R, Siess W (2010) A 2-step mechanism of arterial thrombus formation induced by human atherosclerotic plaques. J Am Coll Cardiol 55(11):1147–1158. doi: 10.1016/j.jacc.2009.11.051 PubMedCrossRefGoogle Scholar
  7. 7.
    Brock TG, McNish RW, Peters-Golden M (1999) Arachidonic acid is preferentially metabolized by cyclooxygenase-2 to prostacyclin and prostaglandin E2. J Biol Chem 274(17):11660–11666PubMedCrossRefGoogle Scholar
  8. 8.
    Matsumoto H, Naraba H, Murakami M, Kudo I, Yamaki K, Ueno A, Oh-ishi S (1997) Concordant induction of prostaglandin E2 synthase with cyclooxygenase-2 leads to preferred production of prostaglandin E2 over thromboxane and prostaglandin D2 in lipopolysaccharide-stimulated rat peritoneal macrophages. Biochem Biophys Res Commun 230(1):110–114. doi: 10.1006/bbrc.1996.5894 PubMedCrossRefGoogle Scholar
  9. 9.
    Murakami M, Naraba H, Tanioka T, Semmyo N, Nakatani Y, Kojima F, Ikeda T, Fueki M, Ueno A, Oh S, Kudo I (2000) Regulation of prostaglandin E2 biosynthesis by inducible membrane-associated prostaglandin E2 synthase that acts in concert with cyclooxygenase-2. J Biol Chem 275(42):32783–32792. doi: 10.1074/jbc.M003505200 PubMedCrossRefGoogle Scholar
  10. 10.
    Cipollone F, Prontera C, Pini B, Marini M, Fazia M, De Cesare D, Iezzi A, Ucchino S, Boccoli G, Saba V, Chiarelli F, Cuccurullo F, Mezzetti A (2001) Overexpression of functionally coupled cyclooxygenase-2 and prostaglandin E synthase in symptomatic atherosclerotic plaques as a basis of prostaglandin E(2)-dependent plaque instability. Circulation 104(8):921–927PubMedCrossRefGoogle Scholar
  11. 11.
    Narumiya S, Sugimoto Y, Ushikubi F (1999) Prostanoid receptors: structures, properties, and functions. Physiol Rev 79(4):1193–1226PubMedGoogle Scholar
  12. 12.
    Paul BZ, Ashby B, Sheth SB (1998) Distribution of prostaglandin IP and EP receptor subtypes and isoforms in platelets and human umbilical artery smooth muscle cells. Br J Haematol 102(5):1204–1211PubMedCrossRefGoogle Scholar
  13. 13.
    Fabre JE, Nguyen M, Athirakul K, Coggins K, McNeish JD, Austin S, Parise LK, FitzGerald GA, Coffman TM, Koller BH (2001) Activation of the murine EP3 receptor for PGE2 inhibits camp production and promotes platelet aggregation. J Clin Invest 107(5):603–610. doi: 10.1172/JCI10881 PubMedCrossRefGoogle Scholar
  14. 14.
    Ma H, Hara A, Xiao CY, Okada Y, Takahata O, Nakaya K, Sugimoto Y, Ichikawa A, Narumiya S, Ushikubi F (2001) Increased bleeding tendency and decreased susceptibility to thromboembolism in mice lacking the prostaglandin E receptor subtype EP(3). Circulation 104(10):1176–1180PubMedCrossRefGoogle Scholar
  15. 15.
    Breyer RM, Bagdassarian CK, Myers SA, Breyer MD (2001) Prostanoid receptors: subtypes and signaling. Annu Rev Pharmacol Toxicol 41:661–690. doi: 10.1146/annurev.pharmtox.41.1.661 PubMedCrossRefGoogle Scholar
  16. 16.
    Kuriyama S, Kashiwagi H, Yuhki KI, Kojima F, Yamada T, Fujino T, Hara A, Takayama K, Maruyama T, Yoshida A, Narumiya S, Ushikubi F (2010) Selective activation of the prostaglandin E2 receptor subtype EP2 or EP4 leads to inhibition of platelet aggregation. Thromb Haemost 104(4):796–803. doi: 10.1160/TH10-01-0043 Google Scholar
  17. 17.
    Gross S, Tilly P, Hentsch D, Vonesch JL, Fabre JE (2007) Vascular wall-produced prostaglandin E2 exacerbates arterial thrombosis and atherothrombosis through platelet EP3 receptors. J Exp Med 204(2):311–320. doi: 10.1084/jem.20061617 PubMedCrossRefGoogle Scholar
  18. 18.
    Heptinstall S, Espinosa DI, Manolopoulos P, Glenn JR, White AE, Johnson A, Dovlatova N, Fox SC, May JA, Hermann D, Magnusson O, Stefansson K, Hartman D, Gurney M (2008) DG-041 inhibits the EP3 prostanoid receptor—a new target for inhibition of platelet function in atherothrombotic disease. Platelets 19(8):605–613. doi: 10.1080/09537100802351073 PubMedCrossRefGoogle Scholar
  19. 19.
    Singh J, Zeller W, Zhou N, Hategan G, Mishra RK, Polozov A, Yu P, Onua E, Zhang J, Ramirez JL, Sigthorsson G, Thorsteinnsdottir M, Kiselyov AS, Zembower DE, Andresson T, Gurney ME (2010) Structure-activity relationship studies leading to the identification of (2e)-3-[l-[(2, 4-dichlorophenyl)methyl]-5-fluoro-3-methyl-lh-indol-7-yl]-n- [(4, 5-dichloro-2-thienyl)sulfonyl]-2-propenamide (DG-041), a potent and selective prostanoid EP3 receptor antagonist, as a novel antiplatelet agent that does not prolong bleeding. J Med Chem 53(1):18–36. doi: 10.1021/jm9005912 PubMedCrossRefGoogle Scholar
  20. 20.
    Brandl R, Richter T, Haug K, Wilhelm MG, Maurer PC, Nathrath W (1997) Topographic analysis of proliferative activity in carotid endarterectomy specimens by immunocytochemical detection of the cell cycle-related antigen ki-67. Circulation 96(10):3360–3368PubMedGoogle Scholar
  21. 21.
    Penz S (2008) Aktivierung von Thrombozyten durch humane atherosklerotische Plaques: Mechanismen und Inhibition. Dissertation, University of MunichGoogle Scholar
  22. 22.
    Toth O, Calatzis A, Penz S, Losonczy H, Siess W (2006) Multiple electrode aggregometry: a new device to measure platelet aggregation in whole blood. Thromb Haemost 96(6):781–788PubMedGoogle Scholar
  23. 23.
    Siess W (1976) Renale Prostaglandin E (PGE) Synthese: Radioimmunologische und biologische PGE-Analyse im Kaninchen- und Humanurin und Änderung der PGE-Ausscheidung nach Uninephrektomie. Dissertation, University of MunichGoogle Scholar
  24. 24.
    Vezza R, Roberti R, Nenci GG, Gresele P (1993) Prostaglandin E2 potentiates platelet aggregation by priming protein kinase C. Blood 82(9):2704–2713PubMedGoogle Scholar
  25. 25.
    Schober LJ, Khandoga AL, Penz SM, Siess W (2010) The EP3-agonist sulprostone, but not prostaglandin E2 potentiates platelet aggregation in human blood. Thromb Haemost 103(6):1268–1269. doi: 10.1160/TH09-12-0815 PubMedCrossRefGoogle Scholar
  26. 26.
    Matthews JS, Jones RL (1993) Potentiation of aggregation and inhibition of adenylate cyclase in human platelets by prostaglandin E analogues. Br J Pharmacol 108(2):363–369PubMedGoogle Scholar
  27. 27.
    Awidi A, Maqablah A, Dweik M, Bsoul N, Abu-Khader A (2009) Comparison of platelet aggregation using light transmission and multiple electrode aggregometry in glanzmann thrombasthenia. Platelets 20(5):297–301. doi: 10.1080/09537100903006246 PubMedCrossRefGoogle Scholar
  28. 28.
    Penz SM, Reininger AJ, Toth O, Deckmyn H, Brandl R, Siess W (2007) Glycoprotein Ibalpha inhibition and ADP receptor antagonists, but not aspirin, reduce platelet thrombus formation in flowing blood exposed to atherosclerotic plaques. Thromb Haemost 97(3):435–443PubMedGoogle Scholar
  29. 29.
    Smith JP, Haddad EV, Downey JD, Breyer RM, Boutaud O (2010) PGE2 decreases reactivity of human platelets by activating EP2 and EP4. Thromb Res 126(1):e23–e29. doi: 10.1016/j.thromres.2010.04.003 PubMedCrossRefGoogle Scholar
  30. 30.
    Iyu D, Glenn JR, White AE, Johnson AJ, Fox SC, Heptinstall S (2010) The role of prostanoid receptors in mediating the effects of PGE(2) on human platelet function. Platelets 21(5):329–342. doi: 10.3109/09537101003718065 PubMedCrossRefGoogle Scholar
  31. 31.
    MacIntyre DE, Gordon JL (1975) Calcium-dependent stimulation of platelet aggregation by PGE. Nature 258(5533):337–339PubMedCrossRefGoogle Scholar
  32. 32.
    Salzman EW, Kensler PC, Levine L (1972) Cyclic 3′, 5′-adenosine monophosphate in human blood platelets. Iv. Regulatory role of cyclic amp in platelet function. Ann N Y Acad Sci 201:61–71PubMedCrossRefGoogle Scholar
  33. 33.
    Gray SJ, Heptinstall S (1985) The effects of PGE2 and CL 115, 347, an antihypertensive PGE2 analogue, on human blood platelet behaviour and vascular contractility. Eur J Pharmacol 114(2):129–137.PubMedCrossRefGoogle Scholar
  34. 34.
    Khandoga AL, Pandey D, Welsch U, Brandl R, Siess W (2010) GPR92/LPA5 lysophosphatidate receptor mediates megakaryocytic cell shape change induced by human atherosclerotic plaques. Cardiovasc Res. doi: 10.1093/cvr/cvq369

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Lisa J. Schober
    • 1
  • Anna L. Khandoga
    • 1
  • Suman Dwivedi
    • 1
  • Sandra M. Penz
    • 1
  • Takayuki Maruyama
    • 2
  • Richard Brandl
    • 3
  • Wolfgang Siess
    • 1
    Email author
  1. 1.Institute for Prevention of Cardiovascular DiseasesLudwig Maximilians University of Munich MünchenGermany
  2. 2.Ono Pharmaceutical CoOsakaJapan
  3. 3.Department of Vascular SurgeryClinic SchwabingMunichGermany

Personalised recommendations