Advertisement

Robust winner determination in positional scoring rules with uncertain weights

  • Paolo ViappianiEmail author
Article
  • 24 Downloads

Abstract

Scoring rules constitute a particularly popular technique for aggregating a set of rankings. However, setting the weights associated with rank positions is a crucial task, as different instantiations of the weights can often lead to different winners. In this work we adopt minimax regret as a robust criterion for determining the winner in the presence of uncertainty over the weights. Focusing on two general settings (non-increasing weights and convex sequences of non-increasing weights) we provide a characterization of the minimax regret rule in terms of cumulative ranks, allowing a quick computation of the winner. We then analyze the properties of using minimax regret as a social choice function. Finally we provide some test cases of rank aggregation using the proposed method.

Keywords

Scoring rules Rank aggregation Computational social choice Possible winners Minimax regret Convex sequences Robust optimization 

Notes

Acknowledgements

This work was partially supported by the ANR project Cocorico-CoDec. The author thanks two anonymous reviewers for helpful comments. Moreover, the author would like to thank Jerome Lang for several comments on an early version of this paper, Stefano Moretti for pointing out some typos, and Patrice Perny for discussion on dominance relations and possible winners.

References

  1. Baumeister, D., Roos, M., Rothe, J., Schend, L., & Xia, L. (2012). The possible winner problem with uncertain weights. In ECAI 2012—20th European conference on artificial intelligence. Montpellier, France, August 27–31 , 2012, pp 133–138.  https://doi.org/10.3233/978-1-61499-098-7-133.
  2. Bossert, W., & Suzumura, K. (2018). Positionalist voting rules: A general definition and axiomatic characterizations. Tech. rep. http://pages.videotron.com/wbossert/positionalist_dec18.pdf.
  3. Boutilier, C., Patrascu, R., Poupart, P., & Schuurmans, D. (2006). Constraint-based optimization and utility elicitation using the minimax decision criterion. Artifical Intelligence, 170(8–9), 686–713.CrossRefGoogle Scholar
  4. Braziunas, D., & Boutilier, C. (2008). Elicitation of factored utilities. AI Magazine, 29(4), 79–92.CrossRefGoogle Scholar
  5. Cook, W. D., & Kress, M. (1990). A data envelopment model for aggregating preference rankings. Management Science, 36(11), 1302–1310.CrossRefGoogle Scholar
  6. Ehrgott, M. (2005). Multicriteria optimization (2nd ed.). Berlin: Springer.  https://doi.org/10.1007/3-540-27659-9.CrossRefGoogle Scholar
  7. Fishburn, P., & Gehrlein, W. (1976). Borda’s rule, positional voting, and Condorcet’s simple majority principle. Public Choice, 28, 79–88.CrossRefGoogle Scholar
  8. Fishburn, P. C., & Vickson, R. G. (1978). Theoretical foundations of stochastic dominance. In G. A. Whitmore & M. C. Findlay (Eds.), Stochastic dominance (pp. 37–113). Lexington: D.C. Heath and Co.Google Scholar
  9. Foroughi, A., & Tamiz, M. (2005). An effective total ranking model for a ranked voting system. Omega, 33(6), 491–496.  https://doi.org/10.1016/j.omega.2004.07.013.CrossRefGoogle Scholar
  10. French, S. (Ed.). (1986). Decision theory: An introduction to the mathematics of rationality. New York: Halsted Press.Google Scholar
  11. García-Lapresta, J. L., & Martínez-Panero, M. (2017). Positional voting rules generated by aggregation functions and the role of duplication. International Journal of Intelligent Systems, 32(9), 926–946.  https://doi.org/10.1002/int.21877.CrossRefGoogle Scholar
  12. Goldsmith, J., Lang, J., Mattei, N., & Perny, P. (2014). Voting with rank dependent scoring rules. In Proceedings of the twenty-eighth AAAI conference on artificial intelligence, July 27–31, 2014, Québec City, Québec, Canada, pp. 698–704.Google Scholar
  13. Green, R. H., Doyle, J. R., & Cook, W. D. (1996). Preference voting and project ranking using DEA and cross-evaluation. European Journal of Operational Research, 90(3), 461–472.  https://doi.org/10.1016/0377-2217(95)00039-9.CrossRefGoogle Scholar
  14. Haghtalab, N., Noothigattu, R., & Procaccia, A. D. (2018). Weighted voting via no-regret learning. In Proceedings of the thirty-second AAAI conference on artificial intelligence, (AAAI-18), New Orleans, Louisiana, USA, February 2–7, 2018, pp. 1055–1062.Google Scholar
  15. Hashimoto, A. (1997). A ranked voting system using a DEA/AR exclusion model: A note. European Journal of Operational Research, 97(3), 600–604.  https://doi.org/10.1016/S0377-2217(96)00281-0.CrossRefGoogle Scholar
  16. Hazen, G. B. (1986). Partial information, dominance, and potential optimality in multiattribute utility theory. Operations Research, 34(2), 296–310.  https://doi.org/10.1287/opre.34.2.296.CrossRefGoogle Scholar
  17. Khodabakhshi, M., & Aryavash, K. (2015). Aggregating preference rankings using an optimistic-pessimistic approach. Computers and Industrial Engineering, 85, 13–16.  https://doi.org/10.1016/j.cie.2015.02.030.CrossRefGoogle Scholar
  18. Konczak, K., & Lang, J. (2005). Voting procedures with incomplete preferences. In Proceedings of IJCAI’05 multidisciplinary workshop on advances in preference handling, Edinburgh, Scotland, UK.Google Scholar
  19. Kouvelis, P., & Yu, G. (1997). Robust discrete optimization and its applications. Dordrecht: Kluwer.CrossRefGoogle Scholar
  20. Llamazares, B. (2016). Ranking candidates through convex sequences of variable weights. Group Decision and Negotiation, 25, 567–584.  https://doi.org/10.1007/s10726-015-9452-8.CrossRefGoogle Scholar
  21. Llamazares, B., & Peña, T. (2009). Preference aggregation and DEA: An analysis of the methods proposed to discriminate efficient candidates. European Journal of Operational Research, 197(2), 714–721.  https://doi.org/10.1016/j.ejor.2008.06.031.CrossRefGoogle Scholar
  22. Llamazares, B., & Peña, T. (2013). Aggregating preferences rankings with variable weights. European Journal of Operational Research, 230(2), 348–355.  https://doi.org/10.1016/j.ejor.2013.04.013.CrossRefGoogle Scholar
  23. Llamazares, B., & Peña, T. (2015a). Positional voting systems generated by cumulative standings functions. Group Decision and Negotiation, 24(5), 777–801.  https://doi.org/10.1007/s10726-014-9412-8.CrossRefGoogle Scholar
  24. Llamazares, B., & Peña, T. (2015b). Scoring rules and social choice properties: Some characterizations. Theory and Decision, 78(3), 429–450.  https://doi.org/10.1007/s11238-014-9429-0.CrossRefGoogle Scholar
  25. Lu, T., & Boutilier, C. (2011). Robust approximation and incremental elicitation in voting protocols. In Proceedings of IJCAI 2011, pp. 287–293.Google Scholar
  26. Merlin, V. (2003). The axiomatic characterizations of majority voting and scoring rules. Mathématiques et Sciences Humaines Mathematics and Social Sciences (163) Google Scholar
  27. Pearman, A. D. (1993). Establishing dominance in multiattribute decision making using an ordered metric method. Journal of the Operational Research Society, 44(5), 461–469.CrossRefGoogle Scholar
  28. Peterson, M. (2017). An introduction to decision theory: Cambridge introductions to philosophy (2nd ed.). Cambridge: Cambridge University Press.  https://doi.org/10.1017/9781316585061.CrossRefGoogle Scholar
  29. Procaccia, A. D., Zohar, A., Peleg, Y., & Rosenschein, J. S. (2009). The learnability of voting rules. Artificial Intelligence, 173(12–13), 1133–1149.  https://doi.org/10.1016/j.artint.2009.03.003.CrossRefGoogle Scholar
  30. Salo, A. (1995). Interactive decision aiding for group decision support. European Journal of Operational Research, 84, 134–149.  https://doi.org/10.1016/0377-2217(94)00322-4.CrossRefGoogle Scholar
  31. Salo, A., & Hämäläinen, R. P. (2001). Preference ratios in multiattribute evaluation (PRIME)-elicitation and decision procedures under incomplete information. IEEE Trans on Systems, Man and Cybernetics, 31(6), 533–545.CrossRefGoogle Scholar
  32. Savage, L. J. (1954). The foundations of statistics. New York: Wiley.Google Scholar
  33. Stein, W. E., Mizzi, P. J., & Pfaffenberger, R. C. (1994). A stochastic dominance analysis of ranked voting systems with scoring. European Journal of Operational Research, 74(1), 78–85.  https://doi.org/10.1016/0377-2217(94)90205-4.CrossRefGoogle Scholar
  34. Viappiani, P. (2018). Positional scoring rules with uncertain weights. In Proceedings of scalable uncertainty management—12th international conference, SUM 2018, Milan, Italy, October 3–5, 2018, pp. 306–320.Google Scholar
  35. Weber, M. (1987). Decision making with incomplete information. European Journal of Operational Research, 28(1), 44–57.  https://doi.org/10.1016/0377-2217(87)90168-8.CrossRefGoogle Scholar
  36. Xia, L., & Conitzer, V. (2011). Determining possible and necessary winners given partial orders. Journal of Artificial Intelligence Research, 41, 25–67.CrossRefGoogle Scholar
  37. Young, H. P. (1974). An axiomatization of Borda’s rule. Journal of Economic Theory, 9, 43–52.CrossRefGoogle Scholar
  38. Young, H. P. (1975). Social choice scoring functions. SIAM Journal on Applied Mathematics, 28(4), 824–838. http://www.jstor.org/stable/2100365.CrossRefGoogle Scholar
  39. Zwicker, W. S. (2016). Introduction to the theory of voting. In F. Brandt, V. Conitzer, U. Endriss, J. Lang, & A. D. Procaccia (Eds.), Handbook of computational social choice (pp. 23–56). Cambridge: Cambridge University Press.  https://doi.org/10.1017/CBO9781107446984.003.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.UMR7606 CNRS, LIP6Sorbonne UniversitéParisFrance

Personalised recommendations