What are axiomatizations good for?

  • Itzhak Gilboa
  • Andrew Postlewaite
  • Larry SamuelsonEmail author
  • David Schmeidler


Do axiomatic derivations advance positive economics? If economists are interested in predicting how people behave, without a pretense to change individual decision making, how can they benefit from representation theorems, which are no more than equivalence results? We address these questions. We propose several ways in which representation results can be useful and discuss their implications for axiomatic decision theory.


Axioms Axiomatization Representation theorem Decision theory 



  1. Allais, M. (1952). Fondements d’une théorie positive des choix comportant un risque et critique des postulats et axiomes de l’École Américaine. Econométrie, 257–331.Google Scholar
  2. Allais, M. (1953). Le comportement de l’homme rationnel devant le risque: Citique des postulats et axiomes de l’École Américaine. Econometrica, 21(4), 503–56.CrossRefGoogle Scholar
  3. Anscombe, F. J., & Aumann, R. J. (1963). A definition of subjective probability. The Annals of Mathematics and Statistics, 34, 199–205.CrossRefGoogle Scholar
  4. Arrow, K. J. (1951). Alternative approaches to the theory of choice in risk-taking situations. Econometrica, 19, 404–437.CrossRefGoogle Scholar
  5. Carnap, R. (1923). Uber die Aufgabe der Physik und die Andwednung des Grundsatze der Einfachstheit. Kant-Studien, 28, 90–107.CrossRefGoogle Scholar
  6. Cozic, M., & Hill, B. (2015). Representation theorems and the semantics of decision-theoretic concepts. Journal of Economic Methodology, 22, 292–311.CrossRefGoogle Scholar
  7. Debreu, G. (1954). Representation of a preference ordering by a numerical function. In R. M. Thrall, C. H. Coombs, & R. L. Davis (Eds.), Decision processes (pp. 159–165). New York: Wiley.Google Scholar
  8. de Finetti, F. (1931). Sul significato Soggettivo della Probabilità. Fundamenta Mathematicae, 17, 298–329.CrossRefGoogle Scholar
  9. de Finetti, F. (1937). La prevision: ses lois logiques, ses sources subjectives. Annales de l’Institut Henri Poincare, 7, 1–68.Google Scholar
  10. Dekel, E., & Lipman, B. L. (2010). How (not) to do decision theory. Annual Review of Economics, 2, 257–282.CrossRefGoogle Scholar
  11. Edwards, W. (1954). The theory of decision-making. Psychological Bulletin, 51, 380–417.CrossRefGoogle Scholar
  12. Ellsberg, D. (1961). Risk, ambiguity and the savage axioms. Quarterly Journal of Economics, 75, 643–669.CrossRefGoogle Scholar
  13. Fishburn, P. C. (1978). On Handa’s new theory of cardinal utility and the maximization of expected return. Journal of Political Economy, 86, 321–324.CrossRefGoogle Scholar
  14. Gilboa, I. (2009). A theory of decision under uncertainty. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  15. Gilboa, I., Postlewaite, A., & Schmeidler, D. (2009). Is it always rational to satisfy savage’s axioms? Economics and Philosophy, 25, 285–296.CrossRefGoogle Scholar
  16. Gilboa, I., Postlewaite, A., & Schmeidler, D. (2012). Rationality of belief. Synthese, 187, 11–31.CrossRefGoogle Scholar
  17. Gilboa, I., Postlewaite, A., Samuelson, L., & Schmeidler, D. (2014). Economic models as analogies. Economic Journal, 128, F513–F533.CrossRefGoogle Scholar
  18. Gilboa, I., Postlewaite, A., Samuelson, L., & Schmeidler, D. (2016). Economics: Between prediction and criticism. International Economic Review (2016) (forthcoming)Google Scholar
  19. Gilboa, I., & Schmeidler, D. (2001). A theory of case-based decisions. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  20. Grether, D. M., & Plott, C. R. (1979). Economic theory of choice and the preference reversal phenomenon. American Economic Review, 69, 623–638.Google Scholar
  21. Grice, H. P. (1957). Meaning. Philosophical Review, 66, 377–388.CrossRefGoogle Scholar
  22. Habermas, J. (1981). Theory of communicative action, Vol I: Reason and the rationalization of society, English edition (p. 1984). Boston: Beacon.Google Scholar
  23. Handa, J. (1977). Risk, probabilities, and a new theory of cardinal utility. Journal of Political Economy, 85, 97–122.CrossRefGoogle Scholar
  24. Herstein, I. N., & Milnor, J. (1953). An axiomatic approach to measurable utility. Econometrica, 21, 291–297.CrossRefGoogle Scholar
  25. Jaffray, J.-Y. (1975). Existence of a continuous utility function: An elementary proof. Econometrica, 43, 981–983.CrossRefGoogle Scholar
  26. Jensen, N.-E. (1967). An introduction to Bernoullian utility theory I, II. Sedish Journal of Economics, 69(163–183), 229–247.Google Scholar
  27. Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47, 263–291.CrossRefGoogle Scholar
  28. Karni, E. (1996). Probabilities and beliefs. Journal of Risk and Uncertainty, 13, 249–262.CrossRefGoogle Scholar
  29. Lichtenstein, S., & Slovic, P. (1971). Reversals of preferences between bids and choices in gambling decisions. Journal of Experimental Psychology, 89, 46–55.CrossRefGoogle Scholar
  30. Lindman, H. R. (1971). Inconsistent preferences among gambles. Journal of Experimental Psychology, 89, 390–397.CrossRefGoogle Scholar
  31. Loewenstein, G. (1992). The fall and rise of psychological explanation in the economics of intertemporal choice. In G. Loewenstein & J. Elster (Eds.), Choice over time (pp. 3–34). New York: Russell Sage.Google Scholar
  32. Luce, R. D., Krantz, D., Suppes, P., & Tversky, A. (1990). Foundations of measurement, Vol. III: Representation, axiomiatization, and invariance. New York: Academic Press.Google Scholar
  33. Luce, R. D., & Suppes, P. (1965). Preference, utility and subjective probability. In R. D. Luce, R. R. Bush, & E. Galanter (Eds.), Handbook of mathematical psychology (Vol. III, pp. 249–410). New York: Wiley.Google Scholar
  34. Marschak, J. (1950). Rational behavior, uncertain prospects, and measurable utility. Econometrica, 18, 111–141.CrossRefGoogle Scholar
  35. Marshall, A. (1920). Principles of economics (8th ed.). London: Macmillan.Google Scholar
  36. Moscati, I. (2016). How economists came to accept expected utility theory: The case of Samuelson and Savage. Journal of Economic Perspectives, 30, 219–236.CrossRefGoogle Scholar
  37. Moscati, I. (2018). Measuring utility: From the marginal revolution to behavioral economics. Oxford: Oxford University Press.CrossRefGoogle Scholar
  38. Popper, K. R. (1934). Logik der Forschunghe: The logic of scientific discovery (English Edition 1958). London: Hutchinson and Co.Google Scholar
  39. Quiggin, J. (1982). A theory of anticipated utility. Journal of Economic Behaviorand Organization, 3, 225–243.CrossRefGoogle Scholar
  40. Ramsey, F. P. (1926). Truth and probability. In R. Braithwaite (Ed.), The foundation of mathematics and other logical essays (p. 1931). London: Routledge.Google Scholar
  41. Savage, L. J. (1954). New York: The foundations of statistics. Oxford: Wiley.Google Scholar
  42. Schmeidler, D. (1989). Subjective probability and expected utility without additivity. Econometrica, 57, 571–587.CrossRefGoogle Scholar
  43. Sen, A. (1993). Internal consistency of choice. Econometrica, 61, 495–521.CrossRefGoogle Scholar
  44. Simon, H. (1957). Models of man. New York: Wiley.Google Scholar
  45. Tversky, A., & Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and Uncertainty, 5, 297–323.CrossRefGoogle Scholar
  46. von Neumann, J., & Morgenstern, O. (1944). Theory of games and economic behavior. Princeton: Princeton University Press.Google Scholar
  47. Yaari, M. (1987). The dual theory of choice under risk. Econometrica, 55, 95–115.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Itzhak Gilboa
    • 1
    • 2
  • Andrew Postlewaite
    • 3
  • Larry Samuelson
    • 4
    Email author
  • David Schmeidler
    • 2
  1. 1.HEC, ParisJouy-en-JosasFrance
  2. 2.Tel-Aviv UniversityTel AvivIsrael
  3. 3.University of PennsylvaniaPhiladelphiaUSA
  4. 4.Department of EconomicsYale UniversityNew HavenUSA

Personalised recommendations