Advertisement

Theoretical and Experimental Chemistry

, Volume 55, Issue 4, pp 274–279 | Cite as

Effect of the Method of Production of Reduced Graphene Oxide on its Catalytic Activity in the Hydrogenation of Ethylene

  • I. B. BychkoEmail author
  • A. A. Abakumov
  • P. E. Strizhak
Article
  • 8 Downloads

The catalytic properties of N-doped hydrazine-reduced graphene oxide (N-RGO) and thermally reduced graphene oxide (TRGO) in the hydrogenation of ethylene by molecular hydrogen were studied. Samples of the TRGO and N-RGO were characterized by transmission and scanning electron microscopy, X-ray diffraction, and Raman and X-ray photoelectron spectroscopy. It was shown that decrease of the oxygen content in the reduced graphene oxide increases its catalytic activity.

Key words

graphene catalysis hydrogenation ethylene 

Notes

The work was completed with partial financial support from target comprehensive programs of fundamental researches at the National Academy of Sciences of Ukraine “Fundamental problems in the creation of new nanomaterials and nanotechnologies” and “New functional substances and materials of chemical production.”

The authors express their gratitude to Prof. D. Tang for assistance in the implementation performing of the investigations by TEM and SEM and to A. Selishchev for assistance in the XPS investigation.

References

  1. 1.
    S. Navalon, A. Dhakshinamoorthy, M. Alvaro, et al., Chem. Soc. Rev., 46, 4501-4529 (2017).CrossRefGoogle Scholar
  2. 2.
    A. T. Murray and Y. Surendranath, ACS Catal., 75, 3307-3312 (2017).CrossRefGoogle Scholar
  3. 3.
    F. Yang, C. Chi, C. Wang, et al., Green Chem., 18, 4254-4262 (2016).CrossRefGoogle Scholar
  4. 4.
    S. Wu, G. Wen, R. Schlögl, and D. S. Su, Phys. Chem. Chem. Phys., 17, 1567-1571 (2015).CrossRefGoogle Scholar
  5. 5.
    R. Gao, L. Pan, J. Lu, et al., ChemCatChem., 9, 4287-4294 (2019).CrossRefGoogle Scholar
  6. 6.
    J. Wu, C. Wen, X. Zou, et al., ACS Catal., 77, 4497-4503 (2017).CrossRefGoogle Scholar
  7. 7.
    P. Sazama, J. Pastvova, C. Rizescu, et al., ACS Catal., 83, 1779-1789 (2018).CrossRefGoogle Scholar
  8. 8.
    R. Liu, F. Li, C. Chen, et al., Catal. Sci. Technol., 7, 1217-1226 (2017).CrossRefGoogle Scholar
  9. 9.
    A. A. Abakumov, I. B. Bychko, A. S. Nikolenko, and P. E. Strizhak, Teor. Éksp. Khim., 54, No. 4, 201-207 (2018). [Theor. Exp. Chem., 54, No. 4, 218-224 (2018) (English translation).]Google Scholar
  10. 10.
    A. Primo, F. Neatu, M. Florea, et al., Nat. Commun., 5, 5291 (2014).CrossRefGoogle Scholar
  11. 11.
    R. Ciriminna, V. Pandarus, F. Be, and M. Pagliar, Org. Process Res. Dev., 18, 1110-1115 (2014).CrossRefGoogle Scholar
  12. 12.
    H. Miyamoto, C. Sakumoto, E. Takekoshi, and Y. Maeda, Org. Process Res. Dev., 19, 1054-1061 (2015).CrossRefGoogle Scholar
  13. 13.
    D. C. Marcano, D. V. Kosynkin, J. M. Berlin, et al., ACSNano., 4, 4806-4814 (2010).Google Scholar
  14. 14.
    L. Stobinski, B. Lesiak, A. Malolepszy, et al., J. Electr. Spectr. Rel. Phenom., 195, 145-154 (2014).CrossRefGoogle Scholar
  15. 15.
    S. Eigle, C. Dotzer, and A. Hirsch, Carbon, 50, 3666-3673 (2012).CrossRefGoogle Scholar
  16. 16.
    G. R. Bigras, X. Glad, R. Martel, et al., Plasma Sources Sci. Technol., 27, 124004 (2018).CrossRefGoogle Scholar
  17. 17.
    K. Singh, P. K. Iyer, and P. K. Giri, J. Appl. Phys., 111, 064304 (2012).CrossRefGoogle Scholar
  18. 18.
    G. Sastre, A. Forneli, V. Almasan, et al., Appl. Catal. A, 547, 52-59 (2017).CrossRefGoogle Scholar
  19. 19.
    A. Ariharan, B. Viswanathan, and V. Nandhakumar, Graphene, 6, 41-60 (2019).CrossRefGoogle Scholar
  20. 20.
    S. Letardi, M. Celino, F. Cleri, and V. Rosato, Surf. Sci., 496, 33-38 (2002).CrossRefGoogle Scholar
  21. 21.
    H. Takagi, H. Hatori, Y. Yamada, et al., J. Alloys Compd., 385, 257-263 (2004).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • I. B. Bychko
    • 1
    Email author
  • A. A. Abakumov
    • 1
  • P. E. Strizhak
    • 1
  1. 1.L. V. Pysarzhevsky Institute of Physical Chemistry, National Academy of Sciences of UkraineKyivUkraine

Personalised recommendations