Advertisement

Theoretical and Experimental Chemistry

, Volume 55, Issue 3, pp 173–200 | Cite as

Photocatalytic Activation of Carbon Monoxide on Semiconductors and Derived Nanocomposites: Basic Principles and Mechanisms: A Review

  • M. L. OvcharovEmail author
  • V. M. Granchak
Article
  • 13 Downloads

The available data on the photocatalytic activation of carbon monoxide are summarized. The most important directions of research and development in this area are examined. The related electronic processes are analyzed and reaction mechanisms in these systems are proposed. The most promising directions for further research in this area are indicated.

Key words

carbon monoxide photocatalysis semiconductor nanostructures nanoparticles metal oxides 

References

  1. 1.
    S. Nigam, R. Nigam, M. Kulshrestha, and S. K. Mittal, Environ. Rev., 18, 137-158 (2010).Google Scholar
  2. 2.
    V. I. Korzhkov, A. V. Vidmachenko, and M. V. Korzhkov, Zh. Akad. Med. Nauk Ukraini, 16, No. 1, 23-37 (2010).Google Scholar
  3. 3.
    M. Amann, Z. Klimont, and F. Wagner, Annu. Rev. Environ. Resour., 38, 31-55 (2013).Google Scholar
  4. 4.
    T. A. Semenova, I. L. Leites, Yu. V. Aksel’rod, et al., Purification of Industrial Gases [in Russian], Khimiya, Moscow (1977).Google Scholar
  5. 5.
    L. T. Bugaenko, M. G. Kuz’min, and L. S. Polak, High Energy Chemistry [in Russian], Khimiya, Moscow (1988).Google Scholar
  6. 6.
    O. M. Stepanenko, L. R. Reiter, V. M. Ledovs’kikh, et al., General and Inorganic Chemistry [in Ukrainian], Ped. Presa, Kiev (2002).Google Scholar
  7. 7.
    G. E. Scuseria, M. D. Miller, F. Jensen, and J. Geertsen, J. Chem. Phys., 94, No. 10, 6660-6663 (1991).Google Scholar
  8. 8.
    N. L. Glinka, General Chemistry [in Russian], Integral-Press, Moscow (2003).Google Scholar
  9. 9.
    N. S. Akhmetov, General and Inorganic Chemistry [in Russian], Vysshaya Shkola Izd. Tsentr Akademiya, Moscow (2001).Google Scholar
  10. 10.
    A. Ernst and J. D. Zibrak, New England Journal of Medicine, 339, No. 22, 1603-1608 (1998).Google Scholar
  11. 11.
    V. V. Kuznetsov, Soros. Obrazovat. Zh., 1, 35-40 (1999).Google Scholar
  12. 12.
    S. O. Apostolyuk, V. S. Dzhigirei, I. A. Sokolovs’kikh, et al., Industrial Ecology [in Ukrainian], Znaniya, Kiev (2012).Google Scholar
  13. 13.
    R. R. Ford, Adv. Catal., 21, 51 (1971).Google Scholar
  14. 14.
    P. Y. Yang, S. P. Ju, Z. M. Lai, et al., Nanoscale, 8, No. 4, 2041-2045 (2016).Google Scholar
  15. 15.
    S. Royer and D. Duprez, ChemCatChem, 3, No. 1, 2465 (2011).Google Scholar
  16. 16.
    R. I. Kuz’mina and V. P. Sevost’yanov, Ros. Khim. Zhurn., 44, No. 1, 71-77 (2000).Google Scholar
  17. 17.
    N. N. Vershinin, N. F. Gol’dshleger, O. N. Efimov, and A. L. Gusev, Al’ternativn. Énerget. Ékol. (ISJAEE), 8, 99-116 (2008).Google Scholar
  18. 18.
    O. A. Fedyaeva and V. O. Onuchina, Nauka, Mysl’: Élektron. Periodich. Zh., No. 2, 164-168 (2017).Google Scholar
  19. 19.
    J. M. Herrmann, P. Vergnon, and S. J. Teichner, J. Catal., 37, No. 1, 57-67 (1975).Google Scholar
  20. 20.
    H. A. Gastiger, N. M. P. N. Markovic, P. N. Ross, and E. J. Cairns, J. Phys. Chem., 98, No. 2, 617-625 (1994).Google Scholar
  21. 21.
    M. Arenz, K. J. Mayrhofer, V. Stamenkovic, et al., J. Am. Chem. Soc., 127, No. 18, 6819-6829 (2005).Google Scholar
  22. 22.
    A. L. Linsebigler, G. Lu, and J. T. Yates, Jr., Chem. Rev., 95, No. 3, 735-758 (1995).Google Scholar
  23. 23.
    T. Ferenchi. T. Strøm, and J. R. Quayle, Microbiology, 91, No. 1, 79-91 (1975).Google Scholar
  24. 24.
    M. Köpke, C. Mihalcea, J. C. Bromley, and S. D. Simpson, Curr. Opin. Biotech., 22, No. 3, 320-325 (2011).Google Scholar
  25. 25.
    M. Haruta, Catal. Today, 36, No. 1, 153-166 (1997).Google Scholar
  26. 26.
    G. C. Bond and D. T. Thompson, Gold Bull., 33, No. 2, 41-50 (2000).Google Scholar
  27. 27.
    F. Boccuzzi and A. Chiorino, J. Phys. Chem. B, 104, No. 23, 5414-5416 (2000).Google Scholar
  28. 28.
    Y. Maeda, Y. Iizuka, and M. Kohyama, J. Am. Chem. Soc., 135, No. 2, 906-909 (2013).Google Scholar
  29. 29.
    R. Si, J. Liu, K. Yang, et al., J. Catal., 311, 71-79 (2014).Google Scholar
  30. 30.
    R. Si, Y. Zhang, et al., Appl. Surf. Sci., 387, 1062-1071 (2016).Google Scholar
  31. 31.
    N. D. Ivanova, I. S. Makeeva, G. V. Sokol’skii, et al., Zh. Prikl. Khim., 75, No. 9, 1452-1455 (2002).Google Scholar
  32. 32.
    A. L. Lapidus and A. Yu. Krylova, Ros. Khim. Zh., 49, No. 1, 43-56 (2000).Google Scholar
  33. 33.
    G. G. Jernigan and G. A. Somorjai, J. Catal., 147, No. 2, 567-577 (1994).Google Scholar
  34. 34.
    N. N. Vershinin, V. I. Berestenko, O. N. Efimov, et al., High Energ. Chem., 52, No. 1, 90-94 (2018).Google Scholar
  35. 35.
    E. B. Gordon, A. V. Karabulin, V. I. Matyushenko, et al., Khim. Vysok. Énergii, 50, No. 4, 305-310 (2016).Google Scholar
  36. 36.
    V. K. Yatsimirskii, L. P. Oleksenko, and L. V. Lutsenko, Katal. Neftekhim., 14, 71-76 (2006).Google Scholar
  37. 37.
    T. S. Nagarjunan and J. G. Calvert, J. Phys. Chem., 68, No. 1, 17-26 (1964).Google Scholar
  38. 38.
    W. Doerffler and K. Hauffe, J. Catal., 3, No. 2, 171-178 (1964).Google Scholar
  39. 39.
    A. Ikekawa, M. Kamiya, Y. Fujita, and T. Kwan, Bull. Chem. Soc. Jpn, 38, No. 1, 32-36 (1965).Google Scholar
  40. 40.
    K. M. Sancier, J. Catal., 9, No. 4, 331-335 (1967).Google Scholar
  41. 41.
    K. Tanaka and G. Blyholder, J. Phys. Chem., 76, No. 22, 3184-3187 (1972).Google Scholar
  42. 42.
    L. V. Lyashenko and Ya. B. Gorokhovatskii, Teor. Éksp. Khim., 3, No. 2, 218-225 (1967). [Theor. Exp. Chem., 3, No. 2, 120-125 (1967) (English translation).]Google Scholar
  43. 43.
    L. V. Lyashenko and Ya. B. Gorokhovatskii, Kinet. Katal., 9, No. 8, 1180-1182 (1968).Google Scholar
  44. 44.
    L. V. Lyashenko and Ya. B. Gorokhovatskii, Dokl. Akad. Nauk SSSR, 186, No. 5, 1125-1127 (1969).Google Scholar
  45. 45.
    L. V. Lyashenko and Ya. B. Gorokhovatskii, Teor. Éksp. Khim., 8, No. 6, 840-844 (1972). [Theor. Exp. Chem., 8, No. 696-699 (1972) (English translation).]Google Scholar
  46. 46.
    L. V. Lyashenko and Ya. B. Gorokhovatskii, Teor. Éksp. Khim., 10, No. 2, 186-192 (1974). [Theor. Exp. Chem., 10, No. 2, 138-142 (1974) (English translation).]Google Scholar
  47. 47.
    W. R. Murphy, T. F. Veerkamp, and T. W. Leland, J. Catal., 43, No. 1, 304-321 (1976).Google Scholar
  48. 48.
    M. Schiavello (ed.), Photoelectrochemistry, Photocatalysis and Photoreactors. Fundamentals and Developments (Nato Science Series C, Vol 146), Springer Science & Business Media (2013).Google Scholar
  49. 49.
    N. B. Wong and J. H. Lunsford, J. Chem. Phys., 56, No. 6, 2664-2667 (1972).Google Scholar
  50. 50.
    V. A. Shvets and V. B. Kazansky, J. Catal., 25, No. 1, 123-130 (1972).Google Scholar
  51. 51.
    V. S. Zakharenko, A. E. Cherkashin, N. P. Keier, and S. V. Koshcheev, Kinet. Katal., 16, No. 1, 182-189 (1975).Google Scholar
  52. 52.
    A. M. Volodin and A. E. Cherkashin, Kinet. Katal., 22, No. 3, 598-606 (1981).Google Scholar
  53. 53.
    K. Tanaka and G. Blyholder, J. Phys. Chem., 76, No. 13, 1807-1814 (1972).Google Scholar
  54. 54.
    F. Steinbach and R. Harborth, Faraday Discuss., 58, 143-150 (1974).Google Scholar
  55. 55.
    Y. Yoshida, T. Itoi, and Y. Izumi, J. Phys. Chem. C, 119, No. 37, 21585-21598 (2015).Google Scholar
  56. 56.
    A. Fujishima and K. Honda, Nature, 238, No. 5358, 37 (1972).Google Scholar
  57. 57.
    A. Thevenet, F. Juillet, and S. J. Teichner, Jap. J. Appl. Phys., 13, No. S2, 529 (1974).Google Scholar
  58. 58.
    H. Courbon, M. Formenti and P. Pichat, J. Phys. Chem., 81, No. 6, 550-554 (1977).Google Scholar
  59. 59.
    A. Linsebigler, G. Lu, and J. T. Yates, J. Phys. Chem., 100, No. 16, 6631-6636 (1996).Google Scholar
  60. 60.
    N. G. Petrik and G. A. Kimmel, J. Phys. Chem. Lett., 1, No. 17, 2508-2513 (2010).Google Scholar
  61. 61.
    N. G. Petrik and G. A. Kimmel, J. Phys. Chem. Lett., 4, No. 3, 344-349 (2013).Google Scholar
  62. 62.
    K. E. Kweon, D. Manogaran, and G. S. Hwang, ACS Catal., 4, No. 11, 4051-4056 (2014).Google Scholar
  63. 63.
    N. G. Petrik, R. Mu, A. Dahal, et al., J. Phys. Chem. C, 122, No. 27, 15382-15389 (2018).Google Scholar
  64. 64.
    R. V. Mikhaylov, K. V. Nikitin, N. I. Glazkova, and V. N. Kuznetsov, J. Photochem. Photobiol. A, 360, 255-261 (2018).Google Scholar
  65. 65.
    W. Dai, X. Chen, X. Zheng, et al., ChemPhysChem, 10, No. 2, 411-419 (2009).Google Scholar
  66. 66.
    I. V. Blashkov, L. L. Basov, and A. A. Lisachenko, J. Phys. Chem. C, 121, No. 51, 28364-28372 (2017).Google Scholar
  67. 67.
    R. Mu, A. Dahal, Z. T. Wang, et al., J. Phys. Chem. Lett., 8, No. 18, 4564-4572 (2017).Google Scholar
  68. 68.
    J. M. Herrmann, H. Courbon, J. Disdier, et al., Stud. Surf. Sci. Catal., 55, 675-682 (1990).Google Scholar
  69. 69.
    H. Akbari and P. Berdahl, Evaluation of Titanium Dioxide as a Photocatalyst for Removing Air Pollutants: PIER Final Project Report, California Energy Commission (2008).Google Scholar
  70. 70.
    D. V. Barsukov, A. N. Pershin, and I. R. Subbotina, J. Photochem. Photobiol. A, 324, 175-183 (2016).Google Scholar
  71. 71.
    D. V. Barsukov and I. R. Subbotina, Russ. Chem. Bull., 67, No. 2, 243-251 (2018).Google Scholar
  72. 72.
    F. Juillet, F. Lecomte, H. Mozzenega, et al., Faraday Symp. Chem. Soc., 7, 57-62 (1973).Google Scholar
  73. 73.
    A. V. Vorontsov, E. N. Savinov, G. B. Barannik, et al., Catal. Today, 39, No. 3, 207-218 (1997).Google Scholar
  74. 74.
    C. Zhou, L. Cheng, Y. Li, et al., Appl. Catal. B, 255, 314-323 (2018).Google Scholar
  75. 75.
    J. Xu, X. Li, X. Wu, et al., J. Phys. Chem. C, 120, No. 23, 12666-12672 (2016).Google Scholar
  76. 76.
    A. Ogata, A. Kazusaka, and M. Enyo, J. Phys. Chem., 90, No. 21, 5201-5205 (1986).Google Scholar
  77. 77.
    T. Tanaka, H. Nojima, T. Yamamoto, et al., Phys. Chem. Chem. Phys., 1, No.22, 5235-5239 (1999).Google Scholar
  78. 78.
    G. Karakas and P. Yetisemiyen, Top. Catal., 56, Nos. 18-20, 1883-1891 (2013).Google Scholar
  79. 79.
    K. Takahama, T. Sako, M. Yokoyama, and S. Hirao, Nippon Kagaku Kaishi, 7, 613-618 (1994).Google Scholar
  80. 80.
    F. Sastre, A. Corma, and H. García, Angew. Chem. Int. Ed., 52, No. 49, 12983-12987 (2013).Google Scholar
  81. 81.
    H. van Damme and W. K. Hall, J. Catal., 69, No. 2, 371-383 (1981).Google Scholar
  82. 82.
    A. V. Vorontsov, E. N. Savinov, and J. Zhensheng, J. Photochem. Photobiol. A, 125, Nos.1-3, 113-117 (1999).Google Scholar
  83. 83.
    M. Zhang, Z. Jin, J. Zhang, et al., J. Mol. Catal. A, 225, No. 1, 59-63 (2005).Google Scholar
  84. 84.
    R. M. Mohamed and E. S. Aazam, J. Alloys Compd., 509, No. 41, 10132-10138 (2011).Google Scholar
  85. 85.
    H. Einaga, M. Harada, S. Futamura, and T. Ibusuki, J. Phys. Chem. B, 107, No. 35, 92909297 (2003).Google Scholar
  86. 86.
    S. Hwang, M. C. Lee, and W. Choi, Appl. Catal. B, 46, No. 1, 49-63 (2003).Google Scholar
  87. 87.
    N. S. Kolobov, D. A. Svintsitskiy, E. A. Kozlova, et al., Chem. Eng. J., 314, 600-611 (2017).Google Scholar
  88. 88.
    H. Gerischer, “Photocatalytic purification and treatment of water and air” in: Proceedings of the First International Conference on TiO2 Photocatalytic and Treatment of Water and Air, London, Ontario, Canada, Nov. 8-13, 1992, Elsevier Science, Amsterdam (1993), pp. 1-17.Google Scholar
  89. 89.
    W. N. Wang, W. J. An, and B. Ramalingam, J. Am. Chem. Soc., 134, No. 27, 11276-11281 (2012).Google Scholar
  90. 90.
    L. Xu, S. Wang, T. Zhang, and F. Chen, Catal. Sci. Technol., 7, No. 17, 3698-3701 (2017).Google Scholar
  91. 91.
    E. Moretti, E. Rodríguez-Aguado, A. Infantes-Molina, et al., Catal. Today, 304, 135-142 (2018).Google Scholar
  92. 92.
    K. Yang, J. Liu, R. Si, and X. Chen, J. Catal., 317, 229-239 (2014).Google Scholar
  93. 93.
    K. Yang, C. Meng, L. Lin, et al., Catal. Sci. Technol., 6, No. 3, 829-839 (2016).Google Scholar
  94. 94.
    J. Zou, Z. Si, Y. Cao, and R. Ran, J. Phys. Chem. C, 120, No. 51, 29116-29125 (2016).Google Scholar
  95. 95.
    S. M. Kim, H. Lee, K. C. Goddeti, et al., J. Phys. Chem. C, 119, No. 28, 16020-16025 (2015).Google Scholar
  96. 96.
    K. Czupryn, I. Kocemba, and J. Rynkowski, React. Kinet. Mech. Catal., 124, No. 1, 187-201 (2018).Google Scholar
  97. 97.
    S. Alayoglu, A. U. Nilekar, M. Mavrikakis, and B. Eichhorn, Nature Mater., 7, No. 4, 333 (2008).Google Scholar
  98. 98.
    L. Guczi, D. Bazin, I. Kovacs, et al., Top. Catal., 20, Nos. 1-4, 129-139 (2002).Google Scholar
  99. 99.
    J. Suntivich, Z. Xu, C. E. Carlton, and J. Kim, J. Am. Chem. Soc., 135, No. 21, 7985-7991 (2013).Google Scholar
  100. 100.
    J. Wang, P. A. Chernavskii, P. A. Khodatov, and Y. Wang, J. Catal., 286, 51-61 (2012).Google Scholar
  101. 101.
    G. Avgouropoulos, T. Ioannides, H. K. Matralis, et al., Catal. Lett., 73, No. 1, 33-40 (2001).Google Scholar
  102. 102.
    B. Kucharczyk, W. Tylus, J. Okal, et al., Chem. Eng. J., 309, 288-297 (2017).Google Scholar
  103. 103.
    O. Rosseler, C. Ulhaq-Bouillet, A. Bonnefont, et al., Appl. Catal. B, 166, 381-392 (2015).Google Scholar
  104. 104.
    T. Zhang, S. Wang, and F. Chen, J. Phys. Chem. C, 120, No. 18, 9732-9739 (2016).Google Scholar
  105. 105.
    I. Barroso-Martín, A. Infantes-Molina, A. Talon, et al., Materials, 11, No. 7, 1203 (2018).Google Scholar
  106. 106.
    A. L. Stroyuk, A. I. Kryukov, S. Ya. Kuchmii, and V. D. Pokhodenko, Teor. Éksp. Khim., 41, No. 4, 199-218 (2005). [Theor. Exp. Chem., 41, No. 4, 207-228 (2005) (English translation).]Google Scholar
  107. 107.
    N. Seifvand and E. Kowsari, RSC Adv., 5, No. 114, 93706-93716 (2015).Google Scholar
  108. 108.
    T. Y. Ma, Z. Y. Yuan, and J. L. Cao, Eur. J. Inorg. Chem., 2010, No. 5, 716-724 (2010).Google Scholar
  109. 109.
    Q. Xie, Y. Zhao, H. Guo, et al, ACS Appl. Mater. Interfaces, 6, No. 1, 421-428 (2013).Google Scholar
  110. 110.
    N. Liu, X. Chen, J. Zhang, and J. W. Schwank, Catal. Today, 258, 139-147 (2015).Google Scholar
  111. 111.
    Y. Jiao, H. Jiang, and F. Chen, ACS Catal., 4, No. 7, 2249-2257 (2014).Google Scholar
  112. 112.
    Y. He, D. Langsdorf, L. Li, and H. Over, J. Phys. Chem. C, 119, No. 5, 2692-2702 (2015).Google Scholar
  113. 113.
    S. Moussa, V. Abdelsayed, and M. S. El-Shall, Chem. Phys. Lett., 510, Nos. 4-6, 179-184 (2011).Google Scholar
  114. 114.
    Y. Yang, Y. Li, M. Zeng, and M. Mao, Appl. Catal. B, 224, 751-760 (2018).Google Scholar
  115. 115.
    S. I. In, P. C. Vesborg, B. L. Abrams, et al., J. Photochem. Photobiol. A, 222, No. 1, 258-262 (2011).Google Scholar
  116. 116.
    Z. Yin, S. Wan, J. Yang, et al., Coord. Chem. Rev., 378, 500-512 (2019).Google Scholar
  117. 117.
    A. Dhakshinamoorthy, Z. Li, and H. Garcia, Chem. Soc. Rev., 47, No. 22, 8134-8172 (2018).Google Scholar
  118. 118.
    Y. Zhang, Q. Li, C. Liu, and X. Shan, Appl. Catal. B, 224, 283-294 (2018).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.L. V. Pysarzhevsky Institute of Physical ChemistryNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations