Advertisement

Theoretical and Experimental Chemistry

, Volume 54, Issue 5, pp 358–363 | Cite as

Effect of Pd0 Content in Palladium Nanoparticles on Their Catalytic Activity in Liquid-Phase Hydrogenation of o-Nitrotoluene

  • I. B. BychkoEmail author
  • Ye. Yu. Kalishyn
  • Z. V. Kaidanovych
  • O. Z. Didenko
  • A. I. Trypolskyi
  • P. E. Strizhak
Article
  • 10 Downloads

It was shown that a catalyst obtained by depositing palladium nanoparticles from a colloidal solution onto a carbon support stabilized with polyvinylpyrrolidone exhibits higher activity in liquid-phase hydrogenation of o-nitrotoluene than a commercial sample of Pd/C with the same palladium content. From analysis of data from TEM, XRD, and XPS it was concluded that the increase of activity is due to the increased content of Pd0 in the synthesized catalyst.

Key words

catalysis nanoparticle palladium hydrogenation o-nitrotoluene 

Notes

The work was carried out within the scope of a comprehensive program of scientific investigations “New functional substances and materials of chemical production” of the National Academy of Sciences of Ukraine (Project 5-18).

References

  1. 1.
    L. Li, A. H. Larsen, N. A. Romero, et al., J. Phys. Chem. Lett., 4, 222-226 (2013).CrossRefPubMedGoogle Scholar
  2. 2.
    G. Agostini, C. Lamberti, R. Pellegrini, et al., ACS Catal., 4, 187-194 (2014).CrossRefGoogle Scholar
  3. 3.
    A. Lazzarini, A. Piovano, R. Pellegrini, et al., Catal. Sci. Technol., 6, 4910-4922 (2016).CrossRefGoogle Scholar
  4. 4.
    M. L. Toebes, J. A. van Dillen, and K. P. de Jong, J. Mol. Catal. A, 173, 75-98 (2001).CrossRefGoogle Scholar
  5. 5.
    H. Yuan, C. Zhang, W. Huo, et al., J. Chem. Sci., 126, 141-145 (2014).CrossRefGoogle Scholar
  6. 6.
    P. D. Burton, D. Lavenson, M. Johnson, et al., Top. Catal., 49, 227-232 (2008).CrossRefGoogle Scholar
  7. 7.
    J. S. Bradley, E. W. Hill, S. Behal, et al., Chem. Mater., 4, 1234-1239 (1992).CrossRefGoogle Scholar
  8. 8.
    A. N. Grace and K. Pandian, Mater. Chem. Phys., 104, 191-198 (2007).CrossRefGoogle Scholar
  9. 9.
    C. P. Ruas, D. K. Fischer, and M. A. Gelesky, J. Nanotech., 906740 (2013).Google Scholar
  10. 10.
    H.-U. Blaser, Science, 313, 312-313 (2006).CrossRefPubMedGoogle Scholar
  11. 11.
    J. Jungers and L. Sajus, Kinetic Methods of Investigation of Chemical Processes [Russian translation], Khimiya, Leningrad (1972).Google Scholar
  12. 12.
    J. Relvas, R. Andrade, F. G. Freire, et al., Catal. Today, 133-135, 828-835 (2008).CrossRefGoogle Scholar
  13. 13.
    M. V. Ulitin, A. A. Trunov, and O. V. Lefedova, Kinet. Katal., 39, 43-48 (1998).Google Scholar
  14. 14.
    Ya. A. Dofman, Catalysts and Mechanisms of Hydrogenation and Oxidation [in Russian], Nauka, Alma-Ata (1984).Google Scholar
  15. 15.
    N. A. Zakarina and G. D. Zakumbaeva, Highly Dispersed Metallic Catalysts [in Russian], Nauka, Alma-Ata (1987).Google Scholar
  16. 16.
    G. Agostini, E. Groppo, A. Piovano, et al., Langmuir, 26, 11204-11211 (2010).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • I. B. Bychko
    • 1
    Email author
  • Ye. Yu. Kalishyn
    • 1
  • Z. V. Kaidanovych
    • 1
  • O. Z. Didenko
    • 1
  • A. I. Trypolskyi
    • 1
  • P. E. Strizhak
    • 1
  1. 1.L. V. Pysarzhevsky Institute of Physical ChemistryNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations