Advertisement

Theoretical and Experimental Chemistry

, Volume 54, Issue 5, pp 322–330 | Cite as

Photocatalytic Monofluorination of Unactivated C(sp3)–H Bonds by N-Fluorobenzenesulfimide Involving the Decatungstate Anion and the Effect of Water Additives on These Reactions

  • A. V. Kozytskiy
  • Ya. V. Panasyuk
  • A. M. Mishura
Article
  • 10 Downloads

The feasibility of efficient photocatalytic monofluorination of unactivated C(sp3)–H bonds of aliphatic amines, ketones, and alcohols in the presence of decatungstate anion and N-fluorobenzenesulfimide has been demonstrated. The presence of water facilitates not only a greater yield of the corresponding fluorine derivatives but also may affect the selectivity of these reactions. Cyclic voltammetry was used to show that one of the factors accounting for the promoting effect of water is an increase in the absolute values of the redox potentials for the oxidation of two- and one-electron-reduced forms of the decatungstate anion.

Key words

photoredox catalysis fluorination decatungstate anion 

Notes

This work was carried out with the financial support of an Academy grant for Scientific Research of Young Scientists of the National Academy of Sciences of Ukraine during 2017-2018 (Contract No. 4M-18) and also partial financial support of the Targeted Joint Program for Research at the National Academy of Sciences of Ukraine on New Functional Substances and Materials for Chemical Production (Project No. 24).

References

  1. 1.
    P. A. Champagne, J. Desroches, J.-D. Hamel, et al., Chem. Rev., 115, No. 17, 9073-9174 (2015).CrossRefPubMedGoogle Scholar
  2. 2.
    J. Wang, M. Sánchez-Roselló, J. L. Aceña, et al., Chem. Rev., 114, No. 4, 2432-2506 (2014).CrossRefPubMedGoogle Scholar
  3. 3.
    M. Esfahanizadeh, K. Omidi, J. Kauffman, et al., Iran J. Pharm. Res., 13, No. 1, 115-126 (2014).PubMedPubMedCentralGoogle Scholar
  4. 4.
    C. Chatalova-Sazepin, R. Hemelaere, J.-F. Paquin, and G. M. Sammis, Synthesis, 47, No. 17, 2554-2569 (2015).CrossRefGoogle Scholar
  5. 5.
    T. H. Rehm, Chem. Eng. Technol., 39, No. 1, 66-80 (2016).CrossRefGoogle Scholar
  6. 6.
    S. Roslin and L. R. Odell, Eur. J. Org. Chem., 2017, No. 15, 1993-2007 (2017).CrossRefGoogle Scholar
  7. 7.
    H. Yi, G. Zhang, H. Wang, et al., Chem. Rev., 117, No. 13, 9016-9085 (2017).CrossRefPubMedGoogle Scholar
  8. 8.
    S. D. Halperin, H. Fan, S. Chang, et al., Angew. Chem., 126, No. 18, 4778-4781 (2014).Google Scholar
  9. 9.
    M. B. Nodwell, A. Bagai, S. D. Halperin, et al., Chem. Commun., 51, No. 59, 11783-11786 (2015).CrossRefGoogle Scholar
  10. 10.
    W. C. Kee, K. F. Chin, M. W. Wong, and C.-H. Tan, Chem. Commun., 50, No. 60, 8211-8214 (2014).CrossRefGoogle Scholar
  11. 11.
    J.-B. Xia, C. Zhu, and C. Chen, J. Am. Chem. Soc., 135, No. 46, 17494-17500 (2013).CrossRefPubMedGoogle Scholar
  12. 12.
    S. D. Halperin, D. Kwon, M. Holmes, et al., Org. Lett., 17, No. 21, 5200-5203 (2015).CrossRefPubMedGoogle Scholar
  13. 13.
    A. Chemseddine, C. Sanchez, J. Livage, et al., Inorg. Chem., 23, No. 17, 2609-2613 (1984).CrossRefGoogle Scholar
  14. 14.
    C. Tanelian, Coord. Chem. Rev., 178-180, Pt 2, 1165-1181 (1998).Google Scholar
  15. 15.
    I. N. Lykakis, E. Evgenidou, and M. Orfanopoulos, Curr. Org. Chem., 16, No. 20, 2400-2414 (2012).CrossRefGoogle Scholar
  16. 16.
    V. D. Waele, O. Poizat, M. Fagnoni, et al., ACS Catal., 6, No. 10, 7174-7182 (2016).CrossRefGoogle Scholar
  17. 17.
    I. Texier, J. A. Delaire, and C. Giannotti, Phys. Chem. Chem. Phys., 2, No. 6, 1205-1212 (2000).CrossRefGoogle Scholar
  18. 18.
    P. Sykes, A Guidebook to Mechanism in Organic Chemistry [Russian translation], Khimiya, Moscow (1991).Google Scholar
  19. 19.
    D. Franck, T. Kniess, J. Steinbach, et al., Bioorg. Med. Chem., 21, No. 3, 643-652 (2013).Google Scholar
  20. 20.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 09, Revision A.02. (2009).Google Scholar
  21. 21.
    A. D. Becke, J. Chem. Phys., 98, No. 7, 5648-5652 (1993).CrossRefGoogle Scholar
  22. 22.
    E. D. Glendening, C. R. Landis, and F. Weinhold, J. Comp. Chem., 34, No. 16, 1429-1437 (2013).CrossRefGoogle Scholar
  23. 23.
    M. Rueda-Becerri, C. C. Sazepin, J. C. T. Leung, et al., J. Am. Chem. Soc., 134, No. 9, 4026-4029 (2012).CrossRefGoogle Scholar
  24. 24.
    T. Yamase, N. Takabayashi, and M. Kaji, J. Chem. Soc., Dalton Trans., No. 5, 793-799 (1984).Google Scholar
  25. 25.
    A. Mylonas, A. Hiskia, E. Androulaki, et al., Phys. Chem. Chem. Phys., 1, No. 3, 437-440 (1999).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. V. Kozytskiy
    • 1
  • Ya. V. Panasyuk
    • 1
  • A. M. Mishura
    • 1
  1. 1.L. V. Pysarzhevsky Institute of Physical ChemistryNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations