Advertisement

Theoretical and Experimental Chemistry

, Volume 54, Issue 5, pp 316–321 | Cite as

Effect of Azo Dyes on the Photoconductivity and Diffraction Efficiency of Holographic Recording Media

  • N. A. Davidenko
  • I. I. Davidenko
  • A. A. Ishchenko
  • M. A. Kudinova
  • E. V. Mokrinskaya
  • V. A. Pavlov
  • N. G. Chuprina
Article
  • 17 Downloads

Films of a nonphotoconducting copolymer of styrene with octyl methacrylate doped with azobenzene dyes have been used to create recording media for polarization holography. An increase in the concentration of the azo dye with electron-donor groups in the chromophore, in contrast to unsubstituted azobenzene, leads to photoconductivity and increased diffraction efficiency of the polarization holograms. The diffraction efficiency can also be increased by charging the films in a coronal discharge. Holographic media with such films can find use both for dynamic polarization holography and for the prolonged storage of holographic recordings similar to photothermoplastic recording media.

Key words

polarization holography diffraction efficiency azo dyes photoconductivity surface relief 

References

  1. 1.
    I. Meglinski (ed.), Biophotonics for Medical Applications, Woodhead Publishing as an Imprint of Elsevier, Cambridge, UK (2015).Google Scholar
  2. 2.
    L. Nikolova and P. S. Ramanujam, Polarization Holography, Cambridge University Press, Cambridge, UK (2009).Google Scholar
  3. 3.
    X. Wang, Azo Polymers: Synthesis, Functions and Applications, Springer Verlag, Berlin_Heidelberg (2017).Google Scholar
  4. 4.
    I. Naydenova (ed.), Holograms _ Recording Materials and Applications, Intech, Rijeka, Croatia (2011).Google Scholar
  5. 5.
    A. Priimagi and A. Shevchenko, J. Polym. Sci. B, 52, 163-182 (2014).Google Scholar
  6. 6.
    I. I. Davidenko, Appl. Opt., 55, No. 12, B133-B138 (2016).CrossRefPubMedGoogle Scholar
  7. 7.
    N. A. Davidenko, I. I. Davidenko, and I. A. Savchenko, J. Appl. Phys., 103, No. 3, 094223-094227 (2008).Google Scholar
  8. 8.
    N. A. Davidenko, I. I. Davidenko, V. A. Pavlov, et al., Teor. Éksp. Khim., 52, No. 5, 298-302 (2016). [Theor. Exp. Chem., 52, No. 5, 298-302 (2016) (English translation).]Google Scholar
  9. 9.
    N. A. Davidenko, I. I. Davidenko, V. A. Pavlov, et al., J. Appl. Phys., 122, 013101-1–013101-1-6 (2017).CrossRefGoogle Scholar
  10. 10.
    N. A. Davidenko, I. I. Davidenko, V. A. Pavlov, et al., Opt. Mater., 76, 169-173 (2018).Google Scholar
  11. 11.
    K. Schwetlick, Organicum, Wiley-VCH Verlag, Weinheim (2001).Google Scholar
  12. 12.
    M. Nonnenmacher, M. P. O’Boyle, and H. K. Wickramasinghe, Appl. Phys. Lett., 58, No. 25, 2921-2927 (1991).CrossRefGoogle Scholar
  13. 13.
    N. A. Davidenko, I. I. Davidenko, S. L. Studzinsky, et al., Appl. Opt., 55, No. 12, B31-B35 (2016).CrossRefPubMedGoogle Scholar
  14. 14.
    A. A. Ishchenko and G. P. Grabchuk, Teor. Éksp. Khim., 45, No. 3, 133-155 (2009). [Theor. Exp. Chem., 45, No. 3, 143-167 (2009) (English translation).]Google Scholar
  15. 15.
    A. V. Kulinich, E. K. Mikitenko, and A. A. Ishchenko, Phys. Chem. Chem. Phys., 18, No. 5, 3444-3453 (2016).CrossRefPubMedGoogle Scholar
  16. 16.
    V. Yu. Venediktov, Fotonika, 55, No. 1, 232-141 (2016).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • N. A. Davidenko
    • 1
  • I. I. Davidenko
    • 1
  • A. A. Ishchenko
    • 2
  • M. A. Kudinova
    • 2
  • E. V. Mokrinskaya
    • 1
  • V. A. Pavlov
    • 1
  • N. G. Chuprina
    • 1
  1. 1.Taras Shevchenko National University of KyivKyivUkraine
  2. 2.Institute of Organic ChemistryNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations