Advertisement

Theoretical and Experimental Chemistry

, Volume 54, Issue 3, pp 186–192 | Cite as

Dependence of Structure of Multilayer Graphene Oxide on Degree of Graphitization of Initial Graphite

  • A. A. Abakumov
  • I. B. Bychko
  • A. S. Nikolenko
  • P. E. Strizhak
Article
  • 28 Downloads

It was shown that the structure of multilayer graphene oxide (GrO) synthesized by Tour method depends substantially on the degree of graphitization (g) and on the particle size of initial graphite. The obtained GrO was characterized by Raman and infrared spectroscopy, X-ray diffraction, and elemental analysis. The GrO contains carbonyl, carboxyl, and hydroxyl groups as well as C–O–C fragments. The dependence of the O/C molar ratio of GrO on the degree of graphitization of the parent graphite is nonmonotonic with a maximum at g ≈ 90%.

Key words

graphite graphitization degree graphene oxide 

Notes

The work was carried out within the scope of a comprehensive program of scientific investigations “New functional substances and materials of chemical production” of the National Academy of Sciences of Ukraine (contract No. 5-18) and a target comprehensive program of investigations of the National Academy of Sciences of Ukraine “Fundamental problems in the creation of new nanomaterials and nanotechnologies” (contract No. 29/18-N).

References

  1. 1.
    D. R. Dreyer, S. Park, C. W. Bielawski, et al., Chem. Soc. Rev., 39, 228-240 (2010).CrossRefPubMedGoogle Scholar
  2. 2.
    A. Bianco, H.-M. Cheng, T. Enoki, et al., Carbon, 65, 1-13 (2013).CrossRefGoogle Scholar
  3. 3.
    A. Dimiev, D. V. Kosynkin, L. B. Alemany, et al., J. Am. Chem. Soc., 134, 2815-2822 (2012).CrossRefPubMedGoogle Scholar
  4. 4.
    C. K. Chua, Z. Sofer, and M. Pumera, Chemistry, 18, No. 42, 13453-9 (2012).CrossRefPubMedGoogle Scholar
  5. 5.
    S. Seiler, C. E. Halbig, F. Grote, et al., Nat. Commun., 9, 836 (2018).CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    C. Botas, P. Álvarez, C. Blanco, et al., Carbon, 50, No. 1, 275-282 (2012).CrossRefGoogle Scholar
  7. 7.
    T. D. Dao and H. M. Jeong, Mat. Res. Bull., 70, 651-657 (2015).CrossRefGoogle Scholar
  8. 8.
    S. Zhou and A. Bongiorno, Sci. Rep., 3, 2484 (2013).CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    D. C. Marcano, D. V. Kosynkin, J. M. Berlin, et al., ACS Nano, 4, No. 8, 4806-4814 (2010).CrossRefPubMedGoogle Scholar
  10. 10.
    A. C. Ferrari, Sol. State. Commun., 143, 47-57 (2007).CrossRefGoogle Scholar
  11. 11.
    F. R. Feret, Analyst, 123, 595-600 (1998).CrossRefGoogle Scholar
  12. 12.
    L. Stobinski, B. Lesiak, A. Malolepszy, et al., Electr. Spec. Relat. Phenom., 195, 145-154 (2014).CrossRefGoogle Scholar
  13. 13.
    M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, et al., Phys. Chem. Chem. Phys., 9, 1276-1291 (2007).CrossRefPubMedGoogle Scholar
  14. 14.
    S. Eigler, C. Dotzer, and A. Hirsch, Carbon, 50, 3666-3673 (2012).CrossRefGoogle Scholar
  15. 15.
    A. M. Dimiev and J. M. Tour, ACS Nano, 8, No. 3, 3060-3068 (2014).CrossRefPubMedGoogle Scholar
  16. 16.
    N. Morimoto, T. Kubo and Y. Nishina, Sci. Rep., 6, 21715 (2016).CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    J. P. Rourke, P. A. Pandey, J. J. Moore, et al., Angew. Chem. Int. Ed., 50, 3137-3177 (2011).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. A. Abakumov
    • 1
  • I. B. Bychko
    • 1
  • A. S. Nikolenko
    • 2
  • P. E. Strizhak
    • 1
  1. 1.L. V. Pysarzhevsky Institute of Physical ChemistryNational Academy of Sciences of UkraineKyivUkraine
  2. 2.V. Lashkaryov Institute of Semiconductor PhysicsNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations