Advertisement

Theoretical and Experimental Chemistry

, Volume 54, Issue 3, pp 147–177 | Cite as

Aggregation-Induced Emission in Organic Nanoparticles: Properties and Applications: a Review

  • V. M. Granchak
  • T. V. Sakhno
  • I. V. Korotkova
  • Yu. E. Sakhno
  • S. Ya. Kuchmy
Article
  • 25 Downloads

Data on the aggregation-induced emission (AIE) of organic nanoparticles are summarized. The mechanisms for the appearance of AIE in nanoparticles with a wide variety of molecular structure including hydrocarbons, compounds with heteroatoms, and organometallic complexes as well as the major factors determining the efficiency of luminescence in the solid state are examined. Applied aspects of the use of AIE are discussed.

Key words

aggregation-induced emission aggregation-induced enhanced emission fluorescent organic nanoparticles 

References

  1. 1.
    S. V. Gaponenko, Optical Properties of Semiconductor Nanocrystals, University Press, Cambridge (1998).Google Scholar
  2. 2.
    A. Rogach (ed.), Semiconductor Nanocrystal Quantum Dots. Synthesis, Assembly, Spectroscopy, and Applications, Springer, New York (2008).Google Scholar
  3. 3.
    J. Lakowicz, C. Geddes, I. Gryczynski, et al., J. Fluoresc., 14, No. 4, 425-441 (2004).Google Scholar
  4. 4.
    C. J. Murphy, T. K. Sau, A. Gole, et al., J. Phys. Chem. B, 109, No. 29, 13857-13870 (2005).Google Scholar
  5. 5.
    M. E. Stewart, C. Anderton, B. Thompson Lucas, et al., Chem. Rev., 108, No. 2, 494-521 (2008).Google Scholar
  6. 6.
    E. Botzung-Appert, V. Monnier, T. Ha Duong, et al., Chem. Mater., 16, No. 9, 1609-1611 (2004).Google Scholar
  7. 7.
    H. Y. Kim, T. G. Bjorklund, S.-H. Lim, and C. J. Bardeen, Langmuir, 19, 3941-3946 (2003).Google Scholar
  8. 8.
    J. Wenus, S. Ceccarelli, D. G. Lidzey, et al., Org. Electron., 8, Nos. 2/3, 120-126 (2007).Google Scholar
  9. 9.
    J. Luo, Z. Xie, B. Z. Tang, et al., Chem. Commun., No. 18, 1740-1741 (2001).Google Scholar
  10. 10.
    J. Chen, Ch. C. W. Law, B. Z. Tang, et al., Chem. Mater., 15, No. 7, 1535-1546 (2003).Google Scholar
  11. 11.
    J. Chen, Z. Xie, B. Z. Tang, et al., Macromolecules, 36, No. 4, 1108-1117 (2003).Google Scholar
  12. 12.
    C. L. Vonnegut, B. W. Tresca, D. W. Johnson, et al., Chem. Asian J. , 10, No. 3, 522-535 (2015).Google Scholar
  13. 13.
    R. Deans, J. Kim, M. R. Machacek, et al., J. Am. Chem. Soc., 122, No. 35, 8565-8566 (2000).Google Scholar
  14. 14.
    C. Belton, D. F. O’Brien, W. J. Blau, et al., Appl. Phys., 78, No. 8, 1059-1061 (2001).Google Scholar
  15. 15.
    C. H. Zhao, H. Sakuda, W. Wakamiya, and S. Yamaguchi, Chem. Eur. J., 15, No. 40, 10603-10612 (2009).Google Scholar
  16. 16.
    H.-B. Fu and J.-N. Yao, J. Am. Chem. Soc., 123, No. 7, 1434-1439 (2001).Google Scholar
  17. 17.
    B.-K. An, S.-K. Kwon, S.-D. Jung, et al., J. Am. Chem. Soc., 124, No. 48, 14410-14415 (2002).Google Scholar
  18. 18.
    Y. Liu, Y. Youhong Tang, N. N. Barashkov, et al., J. Am. Chem. Soc., 132, No. 40, 13951-13953 (2010).Google Scholar
  19. 19.
    N. N. Barashkov, Yu. E. Sakhno, V. M. Granchak, et al., International Conference on Modern Physical Chemistry for Advanced Materials, Kharkov, Ukraine, June 26-30, 2007, http://www.certh.gr/dat/F5BD8DC3/file.pdf.
  20. 20.
    Yuning Hong, W. Y. Lam Jacky, and Ben Zhong Tang, Chem. Soc. Rev., 40, No. 11, 5361-5388 (2011).Google Scholar
  21. 21.
    A. A. Ishchenko and S. A. Shapovalov, J. Appl. Spectrosc., 71, No. 5, 605-629 (2004).Google Scholar
  22. 22.
    A. D. Nekrasov, B. I. Shapiro, A. I. Tolmachev, et al., Khim. Vysok. Énerg., 45, No. 6, 563-569 (2011).Google Scholar
  23. 23.
    E. G. McRae and M. Kasha, J. Chem. Phys., 28, No. 4, 721-722 (1958).Google Scholar
  24. 24.
    N. Kh. Ibrayev, S. A. Yeroshina, A. A. Ishchenko, and I. L. Mushkalo, Mol. Cryst. Liq. Cryst., 427, No. 1, 139-147 (2005).Google Scholar
  25. 25.
    N. Kh. Ibraev, A. A. Ishchenko, R. Kh. Karamysheva, and I. L. Mushkalo, J. Lumin., 90, Nos. 3/4, 81-88 (2000).Google Scholar
  26. 26.
    H. Kasai, Y. Yoshikawa, T. Seko, et al., Mol. Cryst. Liq. Cryst., 294, No. 1, 173-176 (1997).Google Scholar
  27. 27.
    H. Kasai, H, Kamatani, S. Okada, et al., Jpn. J. Appl. Phys., 35, Pt 2, No. 2B, L221-L223 (1996).Google Scholar
  28. 28.
    H. Kasai, H. Kamatani, Y. Yoshikawa, et al., Chem. Lett., 26, No. 11, 1181-1182 (1997).Google Scholar
  29. 29.
    Y. Komai, H. Kasai, H. Hirakoso, et al., Mol. Cryst. Liq. Cryst., 322, No. 1, 167-172 (1998).Google Scholar
  30. 30.
    Y. Xu, P. Xue, D. Xu, et al., Org. Biomol. Chem., 8, No. 19, 4289-4296 (2010).Google Scholar
  31. 31.
    M. Martínez-Abadía, B. Robles-Hernández, M. R. de la Fuente, et al., Adv. Mater., 28, No. 31, 6586-6591 (2016).Google Scholar
  32. 32.
    Xing-Liang Peng, Sergi Ruiz-Barragan, Ze-Sheng Li, et al., J. Mater. Chem. C, 4, No. 14, 2802-2810 (2016).Google Scholar
  33. 33.
    M. Martínez-Abadía, S. Varghese, R. Giménez, and M. B. Ros, J. Mater. Chem. C, 4, No. 14, 2886-2893 (2016).Google Scholar
  34. 34.
    D. Oelkrug, A. Tompert, J. Gierschner, et al., J. Phys. Chem. B, 102, No. 11, 1902-1907 (1998).Google Scholar
  35. 35.
    M. M. Souza, G. Rumbles, I. R. Gould, et al., Synth. Met., 111/112, 539-543 (2000).Google Scholar
  36. 36.
    C. Zhao, Z. Wang, Y. Yang, et al., Cryst. Growth Des., 12, No. 3, 1227-1231 (2012).Google Scholar
  37. 37.
    Fuke Wang, Ming-Yong Han, Khine Yi Mya, et al., J. Am. Chem. Soc., 127, No. 29, 10350-10355 (2005).Google Scholar
  38. 38.
    F. Ito, T. Sagawa, and H. Koshiyama, Res. Chem. Intermed., 41, No. 9, 6897-6906 (2015).Google Scholar
  39. 39.
    N. N. Barashkov, T. V. Sakhno, R. N. Nurmukhametov, and O. A. Khakhel’, Usp. Khim., 66, No. 6, 579-593 (1993).Google Scholar
  40. 40.
    F. Ito, T. Kakiuchi, T. Sakano, and T. Nagamura, Phys. Chem. Chem. Phys., 12, No. 36, 10923-10927 (2010), doi:  https://doi.org/10.1039/c003023f.Google Scholar
  41. 41.
    R. L. Penn and J. F. Banfield, Science, 281, No. 5379, 969-971 (1998).Google Scholar
  42. 42.
    Y. Qian, S. Li, G. Zhang, et al., J. Phys. Chem. B, 111, No. 21, 5861-5868 (2007).Google Scholar
  43. 43.
    Li Qiang Yan, Zhi Neng Kong, Yong Xia, and Zheng Jian Qi, New J. Chem., 40, No. 8, 7061-7067 (2016).Google Scholar
  44. 44.
    S. Li, L. He, F. Xiong, et al., J. Phys. Chem. B, 108, No. 30, 10887-10892 (2004).Google Scholar
  45. 45.
    C. Feng, J. Li, X. Han, et al., Faraday Discuss., 196, 163-176 (2017).Google Scholar
  46. 46.
    R. Hu, E. Lager, and A. Aguilar-Aguilar, J. Phys. Chem. C, 113, No. 36, 15845-15853 (2009).Google Scholar
  47. 47.
    A. Aguilar-Granda, S. Pérez-Estrada, A. E. Roa, et al., Cryst. Growth Des., 16, No. 6, 3435-3442 (2016), doi:  https://doi.org/10.1021/acs.cgd.6b00395.Google Scholar
  48. 48.
    Kai Li, Yang Zhang, Bing Qiao, et al., RSC Adv., 7, No. 48, 30229-30241 (2017).Google Scholar
  49. 49.
    S. K. Behera, A. Murkherjee, G. Sadhuragiri, et al., Faraday Disc., 196, 71-90 (2017).Google Scholar
  50. 50.
    I. Manikandan, C. H. Chang, and C. L. Chen, Spectrochim. Acta A, 182, 58-66 (2017).Google Scholar
  51. 51.
    M. Han, S. J. Cho, Y. Norikane, et al., Chemistry, 22, No. 12, 3971-3975 (2016).Google Scholar
  52. 52.
    J. Mei, N. L. Leung, R. T. Kwok, et al., Chem. Rev., 115, No. 21, 11718-11940 (2015).Google Scholar
  53. 53.
    B. Liu and R. Zhang, Faraday Discuss., 196, 461-472 (2017).Google Scholar
  54. 54.
    Y. Hong, J. W. Y. Lam, and B. Z. Tang, Chem. Commun., No. 29, 4332-4353 (2009).Google Scholar
  55. 55.
    C. J. Bhongale, C.-W. Chang, E. W.-G. Diau, et al., Chem. Phys. Lett., 419, Nos. 4-6, 444-449 (2006).Google Scholar
  56. 56.
    T. V. Sakhno, I. V. Korotkova, and O. A. Khakhel’, Teor. Éksp. Khim., 32, No. 4, 247-250 (1996). [Theor. Exp. Chem., 32, No. 4, 217-220 (1996) (English translation).]Google Scholar
  57. 57.
    T. V. Sakhno, I. V. Korotkova, and O. A. Khakhel’, Funct. Mater., 3, No. 4, 502-505 (1996).Google Scholar
  58. 58.
    T. V. Sakhno, I. V. Korotkova, and N. N. Barashkov, Zh. Fiz. Khim., 71, No. 5, 861-863 (1997).Google Scholar
  59. 59.
    H. Nie, K. Hu, Y. Cai, et al., Mater. Chem. Front., 1, No. 5, 1125-1129 (2017).Google Scholar
  60. 60.
    Fan Bu, Erjing Wang, Qian Peng, et al., Chem. Eur. J., 21, No. 1, 1-11 (2015).Google Scholar
  61. 61.
    J. Gierschner, L. Luer, B. Milian-Medina, et al., J. Phys. Chem. Lett., 4, No. 16, 2686-2697 (2013).Google Scholar
  62. 62.
    H.-J. Egelhaaf, M. Brun, S. Reich, and D. Oelkrug, J. Mol. Struct., 267, No. 4, 297-302 (1992).Google Scholar
  63. 63.
    Y. Zhang, L. Kong, J. Shi, et al., Chin. J. Chem., 33, No. 7, 701-704 (2015).Google Scholar
  64. 64.
    Y. Zhang, H. Mao, L. Kong, et al., Dyes Pigments, 133, 354-362 (2016).Google Scholar
  65. 65.
    A. G. Mirochnik, E. V. Fedorenko, D. Kh. Gizzatulina, and V. E. Karasev, Zh. Fiz. Khim., 81, No. 11, 2096-2099 (2007).Google Scholar
  66. 66.
    S. A. Tikhonov, V. I. Vovna, I. S. Osmushko, et al., Spectrochim. Acta A, 189, 563-570 (2018).Google Scholar
  67. 67.
    X. Xu, S. Chen, L. Li, et al., J. Mater. Chem., 18, No. 22, 2555-2561 (2008).Google Scholar
  68. 68.
    S. K. Rajagopal, A. M. Philip, K. Nagarajan, and M. Hariharan, Chem. Commun., 50, No. 63, 8644-8647 (2014).Google Scholar
  69. 69.
    S. K. Rajagopan, V. S. Reddy, and M. Hariharan, Cryst. Eng. Commun., 18, No. 27, 5089-5094 (2016).Google Scholar
  70. 70.
    L. G. Samsonova, N. I. Selivanov, and T. N. Kopylova, Opt. Spektroskop., 116, No. 1, 79-84 (2014).Google Scholar
  71. 71.
    M. L. Ferrer and F. del Monte, J. Phys. Chem. B, 109, No. 1, 80-86 (2005).Google Scholar
  72. 72.
    G. Quian, B. Dai, M. Luo, et al., Chem. Mater., 20, No. 19, 6208-6216 (2008).Google Scholar
  73. 73.
    W. Tang, Y. Xiang, and A. Tong, J. Org. Chem., 74, No. 5, 2163-2166 (2009).Google Scholar
  74. 74.
    Xia Cao, Xi Zeng, Lan Mu, et al., Sensors Actuators B, 177, 493-499 (2013).Google Scholar
  75. 75.
    H. Xiao, K. Chen, D. Cui, et al., New J. Chem., 38, No 6, 2386-2393 (2014).Google Scholar
  76. 76.
    C. Niu, L. Zhao, T. Fang, et al., Langmuir, 30, No. 9, 2351-2359 (2014).Google Scholar
  77. 77.
    J. Li, W. Yang, W. Zhou, et al., RSC Adv., 6, No. 42, 35833-35841 (2016).Google Scholar
  78. 78.
    J. Luo, K. Song, F. L. Gu, et al., Chem. Sci., 2, No. 10, 2029-2034 (2011).Google Scholar
  79. 79.
    N. L. C. Leung, N. Xie, W. Yuan, et al., Chem. Eur. J., 20, No. 47, 15349-15353 (2014).Google Scholar
  80. 80.
    T. Nishiuchi, K. Tanaka, and Y. Yoshiyuki Kuwatani, et al., Chem. Eur. J., 19, No. 13, 4110-4116 (2013).Google Scholar
  81. 81.
    C. Yuan, S. Saito, C. Camacho, et al., Chem. Eur. J., 20, No. 8, 2193-2200 (2014).Google Scholar
  82. 82.
    C.-X. Yuan, X.-T. Tao, Y. Ren, et al., J. Phys. Chem. C, 111, No. 34, 12811-12816 (2007).Google Scholar
  83. 83.
    J. Liu, Q. Meng, X. Zhang, et al., Chem. Commun., 49, No. 12, 1199-1201 (2013).Google Scholar
  84. 84.
    K. S. N. Kamaldeep, S. Kaur, V. Bhalla, et al., J. Mater. Chem. A, 2, No. 22, 8369-8375 (2014).Google Scholar
  85. 85.
    S. Kaur, A. Gupta, V. Bhalla, et al., J. Mater. Chem. C, 2, No. 35, 7356-7363 (2014).Google Scholar
  86. 86.
    E. Cariati, V. Lanzeni, E. Tordin, et al., Phys. Chem. Chem. Phys., 13, No. 40, 18005-18014 (2011).Google Scholar
  87. 87.
    Bin Wang, Xiaojuan Wang, Wenliang Wang, and Fengyi Liu, J. Phys. Chem. C, 120, No. 38, 21850-21857 (2016).Google Scholar
  88. 88.
    N. J. Hestand and F. C. Spano, Accounts Chem. Res., 50, No. 2, 341-350 (2017).Google Scholar
  89. 89.
    W. I. Gruzecki, J. Biol. Phys., 18, No. 2, 99-109 (1991).Google Scholar
  90. 90.
    W. I. Gruzecki, B. Zelent, and R. M. Leblanc, Chem. Phys. Lett., 171, Nos. 5/6, 563-568 (1990).Google Scholar
  91. 91.
    N. Ramesh and A. Patnaik, J. Phys. Chem. C, 120, No. 3, 1909-1917 (2016).Google Scholar
  92. 92.
    A. A. Muenter, D. V. Brumbaugh, J. J. Apolito, et al., J. Phys. Chem., 96, No. 7, 2783-2790 (1992).Google Scholar
  93. 93.
    J. Gierschner and S. Y. Park, J. Mater. Chem. C, 1, No. 37, 5818-5832 (2013).Google Scholar
  94. 94.
    L. M. Nikolenko and A. V. Ivanchikhina, Khim. Vysok. Énerg., 44, No. 6, 1-9 (2010).Google Scholar
  95. 95.
    B. Bhattacharyya, A. Kundu, A. Das, et al., RSC Adv., 6, No. 26, 21907-21916 (2016).Google Scholar
  96. 96.
    D. A. Nosova, E. P. Zarochentseva, S. O. Vysotskaya, et al., Opt. Spektroskop., 117, No. 6, 907-913 (2014).Google Scholar
  97. 97.
    B. I. Shapiro, L. S. Sokolova, V. A. Kuz’min, et al., Nanotechnol. in Russia, 7, Nos. 5/6, 205-212 (2012).Google Scholar
  98. 98.
    B.-K. An, J. Gierschner, and S. Y. Park, Accounts Chem. Res., 45, No. 4, 544-554 (2012).Google Scholar
  99. 99.
    S. Ozcelik and D. L. Akins, J. Phys. Chem. B, 103, No. 42, 8926-8929 (1999).Google Scholar
  100. 100.
    B. Zhang, W. Diao, C. Bi, et al., J. Fluoresc., 22, No. 1, 1-7 (2012).Google Scholar
  101. 101.
    T. V. Sakhno, I. V. Korotkova, N. N. Barashkov, and J. P. Ferraris, SPIE, Partenit, Crimea, Ukraine, 5-10 October, 1997, 3488, pp. 284-292.Google Scholar
  102. 102.
    D. Oelkrug, A. Tompert, H.-J. Egelhaaf, et al., Synth. Met., 83, No. 3, 231-237 (1996).Google Scholar
  103. 103.
    F. Lange, D. Hohnholz, M. Leuze, et al., Synth. Met., 101, No. 1, 652-653 (1999).Google Scholar
  104. 104.
    J. F. Lamère, N. Saffon, I. D. Santos, and S. Fery-Forgues, Langmuir, 26, No. 12, 10210-10217 (2010).Google Scholar
  105. 105.
    L. Ravotto and P. Ceroni, Coord. Chem. Rev., 346, 62-76 (2017).Google Scholar
  106. 106.
    V. Sathish, A. Ramdass, P. Thanasekaran, and K.-L. Lu, J. Photochem. Photobiol. C, 23, 25-44 (2015).Google Scholar
  107. 107.
    P. Alam, S. Dash, C. Climent, et al., RSC Adv., 7, No. 10, 5642-5648 (2017).Google Scholar
  108. 108.
    Yang Jiang, Guangfu Li, Weilong Che, et al., Chem. Commun., 53, No. 21, 3022-3025 (2017).Google Scholar
  109. 109.
    G. G. Shan, H. B. Li, J. S. Qin, et al., Dalton Trans., 41, No. 32, 9590-9593 (2012).Google Scholar
  110. 110.
    G. F. Li, Y. Wu, G. G. Shan, et al., Chem. Commun., 50, No. 53, 6977-6980 (2014).Google Scholar
  111. 111.
    P. Thanasekaran, J. Y. Wu, B. Manimaran, et al., J. Phys. Chem. A, 111, No. 43, 10953-10960 (2007).Google Scholar
  112. 112.
    V. M. Granchak, T. V. Sakhno, and S. Ya. Kuchmy, Teor. Éksp. Khim., 50, No. 1, 1-20 (2014) [Theor. Exp. Chem., 50, No. 1, 1-20 (2014) (English translation).]Google Scholar
  113. 113.
    J. L. Banal, J. M. White, K. P. Ghiggino, et al., Sci. Rep., 4, 4635 (2014).Google Scholar
  114. 114.
    Kok-Haw Ong and Bin Liu, Molecules, 22, No. 6, 897 (2017), doi:  https://doi.org/10.3390/molecules22060897.
  115. 115.
    Guangxue Feng, T. K. Kwok Ryan, Ben Zhong Tang, and Bin Liu, Appl. Phys. Rev., 4, 021307 (2017).Google Scholar
  116. 116.
    J. L. Banal, K. P. Ghiggino, and W. W. H. Wong, Phys. Chem. Chem. Phys., 16, No. 46, 25358-25363 (2014).Google Scholar
  117. 117.
    J. L. Banal, J. M. White, T. W. Lam, et al., Adv. Energy Mater., 5, 1500818 (2015).Google Scholar
  118. 118.
    J. L. Banal, H. Soleimaninejad, F. M. Jradi, et al., J. Phys. Chem. C, 120, No. 24, 12952-12958 (2016).Google Scholar
  119. 119.
    B. Zhang, J. L. Banal, D. J. Jones, et al., Mater. Chem. Front., 2, No. 3, 615-619 (2018).Google Scholar
  120. 120.
    Z. J. Zhao, J. W. Y. Lam, and B. Z. Tang, J. Mater. Chem., 22, No. 45, 23726-23740 (2012).Google Scholar
  121. 121.
    Y. H. Liu, C. Mu, K. Jiang, et al., Adv. Mater., 27, No. 6, 1015-1020 (2015).Google Scholar
  122. 122.
    Y. Hong, Methods Appl. Fluoresc., 4, 022003 (2016).Google Scholar
  123. 123.
    W. Qin, Z. Yang, Y. Jiang, et al., Chem. Mater., 27, No. 11, 3892-3901 (2015).Google Scholar
  124. 124.
    B. Liu, H. Nie, X. Zhou, et al., Adv. Function. Mater., 26, No. 5, 776-783 (2016).Google Scholar
  125. 125.
    Z. L. Xie, C. J. Chen, S. D. Xu, et al., Angew. Chem. Int. Ed., 54, No. 24, 7181-7184 (2015).Google Scholar
  126. 126.
    D. Zhao, Fan Fan, Cheng Juan, et al., Adv. Opt. Mater., 3, No. 2, 199-202 (2015).Google Scholar
  127. 127.
    J. Liu, H. Su, L. Meng, et al., Chem. Sci., 3, No. 9, 2737-2747 (2012).Google Scholar
  128. 128.
    G. Zhang, X. Zhang, Y. Zhang, et al., Sensors Actuators B, 221, 730-739 (2015).Google Scholar
  129. 129.
    C. A. Huerta-Aguilar, P. Raj, P. Thangarasu, and N. Singh, RSC Adv., 6, No. 44, 37944-37952 (2016).Google Scholar
  130. 130.
    Tang Guo, Xiaozheng Cao, Peng Ge, et al., Org. Biomol. Chem., 15, No. 20, 4375-4382 (2017).Google Scholar
  131. 131.
    A. Malakar, M. Kumar, A. Reddy, et al., Photochem. Photobiol. Sci., 15, No. 7, 937-948 (2016), doi:  https://doi.org/10.1039/c6pp00122j.Google Scholar
  132. 132.
    Dan Wang, Shu-Mu Li, Jian-Quan Zheng, et al., Inorg. Chem., 56, No. 2, 984-990 (2017).Google Scholar
  133. 133.
    Y. R. Li, H. T. Zhou, W. Chen, et al., Tetrahedron, 72, No. 36, 5620-5625 (2016).Google Scholar
  134. 134.
    T. Tian, X. Chen, H. Li, et al., Analyst, 138, No. 4, 991-994 (2013).Google Scholar
  135. 135.
    T. Han, J. W. Lam, N. Zhao, et al., Chem. Commun., 49, No. 42, 4848-4850 (2013).Google Scholar
  136. 136.
    Y. Cai, L. Li, Z. Wang, et al., Chem. Commun., 50, No. 64, 8892-8895 (2014).Google Scholar
  137. 137.
    J. H. Wang, H. T. Feng, and Y. S. Zheng, Chem. Commun., 50, No. 77, 11407-11410 (2014).Google Scholar
  138. 138.
    Ruoyu Zhang, Xiaolei Cai, Guang Feng, and Ben Liu, Faraday Discuss., 196, 363-375 (2017).Google Scholar
  139. 139.
    M. Wang, G. Zhang, D. Zhang, et al., J. Mater. Chem., 20, No. 10, 1858-1867 (2010).Google Scholar
  140. 140.
    J. Liang, B. Z. Tang, and B. Liu, Chem. Soc. Rev., 44, No. 10, 2798-2811 (2015).Google Scholar
  141. 141.
    H. Shi, J. Liu, J. Geng, et al., J. Am. Chem. Soc., 134, No. 23, 9569-9572 (2012).Google Scholar
  142. 142.
    H. Shi, R. T. K. Kwok, J. Liu, et al., J. Am. Chem. Soc., 134, No. 43, 17972-17981 (2012).Google Scholar
  143. 143.
    D. Ding, K. Li, B. Liu, and B. Z. Tang, Accounts Chem. Res., 46, No. 11, 2441-2453 (2013).Google Scholar
  144. 144.
    R. T. Kwok, C. W. Leung, J. W. Lam, et al., Chem. Soc. Rev., 44, No. 13, 4228-4238 (2015).Google Scholar
  145. 145.
    H. Gao, X. Zhao, and S. Chen, Molecules, 23, No. 2, 419-439 (2018).Google Scholar
  146. 146.
    Y. Y. Yuan, C. J. Zhang, M. Gao, et al., Angew. Chem. Int. Ed., 54, No. 6, 1780-1786 (2015).Google Scholar
  147. 147.
    Y. Y. Yuan, S. D. Xu, X. M. Cheng, et al., Angew. Chem. Int. Ed., 55, No. 22, 6457-6461 (2016).Google Scholar
  148. 148.
    Y. Y. Yuan, C. J. Zhang, S. D. Xu, and B. Liu, Chem. Sci., 7, No. 3, 1862-1866 (2016).Google Scholar
  149. 149.
    F. Hu, Y. Y. Huang, G. X. Zhang, et al., Anal. Chem., 86, No. 15, 7987-7995 (2014).Google Scholar
  150. 150.
    G. X. Feng, Y. Y. Yuan, H. Fang, et al., Chem. Commun., 51, No. 62, 12490-12493 (2015).Google Scholar
  151. 151.
    E. G. Zhao, Y. L. Chen, S. J. Chen, et al., Adv. Mater., 27, No. 33, 4931-4937 (2015).Google Scholar
  152. 152.
    W. Qin, D. Dan, J. Z. Liu, et al., Adv. Funct. Mater., 22, No. 4, 771-779 (2012).Google Scholar
  153. 153.
    K. Li, W. Qin, D. Ding, et al., Sci. Rep., 3, 1150-1156 (2013).Google Scholar
  154. 154.
    D. Ding, D. Mao, K. Li, et al., ACS Nano, 8, No. 12, 12620-12631 (2014).Google Scholar
  155. 155.
    L. L. Yan, Y. Zhang, B. Xu, et al., Nanoscale, 8, No. 5, 2471-2487 (2016).Google Scholar
  156. 156.
    J. Liu, C. Chen, S. Ji, et al., Chem. Sci., 8, No. 4, 2782-2789 (2017).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • V. M. Granchak
    • 1
  • T. V. Sakhno
    • 2
  • I. V. Korotkova
    • 3
  • Yu. E. Sakhno
    • 2
  • S. Ya. Kuchmy
    • 1
  1. 1.L. V. Pysarzhevsky Institute of Physical Chemistry, National Academy of Sciences of UkraineKyivUkraine
  2. 2.Poltava University of Economics and TradePoltavaUkraine
  3. 3.Poltava State Agrarian AcademyPoltavaUkraine

Personalised recommendations