Advertisement

Theoretical and Experimental Chemistry

, Volume 54, Issue 3, pp 147–177 | Cite as

Aggregation-Induced Emission in Organic Nanoparticles: Properties and Applications: a Review

  • V. M. Granchak
  • T. V. Sakhno
  • I. V. Korotkova
  • Yu. E. Sakhno
  • S. Ya. Kuchmy
Article
  • 96 Downloads

Data on the aggregation-induced emission (AIE) of organic nanoparticles are summarized. The mechanisms for the appearance of AIE in nanoparticles with a wide variety of molecular structure including hydrocarbons, compounds with heteroatoms, and organometallic complexes as well as the major factors determining the efficiency of luminescence in the solid state are examined. Applied aspects of the use of AIE are discussed.

Key words

aggregation-induced emission aggregation-induced enhanced emission fluorescent organic nanoparticles 

References

  1. 1.
    S. V. Gaponenko, Optical Properties of Semiconductor Nanocrystals, University Press, Cambridge (1998).CrossRefGoogle Scholar
  2. 2.
    A. Rogach (ed.), Semiconductor Nanocrystal Quantum Dots. Synthesis, Assembly, Spectroscopy, and Applications, Springer, New York (2008).Google Scholar
  3. 3.
    J. Lakowicz, C. Geddes, I. Gryczynski, et al., J. Fluoresc., 14, No. 4, 425-441 (2004).CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    C. J. Murphy, T. K. Sau, A. Gole, et al., J. Phys. Chem. B, 109, No. 29, 13857-13870 (2005).CrossRefPubMedGoogle Scholar
  5. 5.
    M. E. Stewart, C. Anderton, B. Thompson Lucas, et al., Chem. Rev., 108, No. 2, 494-521 (2008).CrossRefPubMedGoogle Scholar
  6. 6.
    E. Botzung-Appert, V. Monnier, T. Ha Duong, et al., Chem. Mater., 16, No. 9, 1609-1611 (2004).CrossRefGoogle Scholar
  7. 7.
    H. Y. Kim, T. G. Bjorklund, S.-H. Lim, and C. J. Bardeen, Langmuir, 19, 3941-3946 (2003).CrossRefGoogle Scholar
  8. 8.
    J. Wenus, S. Ceccarelli, D. G. Lidzey, et al., Org. Electron., 8, Nos. 2/3, 120-126 (2007).CrossRefGoogle Scholar
  9. 9.
    J. Luo, Z. Xie, B. Z. Tang, et al., Chem. Commun., No. 18, 1740-1741 (2001).Google Scholar
  10. 10.
    J. Chen, Ch. C. W. Law, B. Z. Tang, et al., Chem. Mater., 15, No. 7, 1535-1546 (2003).CrossRefGoogle Scholar
  11. 11.
    J. Chen, Z. Xie, B. Z. Tang, et al., Macromolecules, 36, No. 4, 1108-1117 (2003).CrossRefGoogle Scholar
  12. 12.
    C. L. Vonnegut, B. W. Tresca, D. W. Johnson, et al., Chem. Asian J. , 10, No. 3, 522-535 (2015).CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    R. Deans, J. Kim, M. R. Machacek, et al., J. Am. Chem. Soc., 122, No. 35, 8565-8566 (2000).CrossRefGoogle Scholar
  14. 14.
    C. Belton, D. F. O’Brien, W. J. Blau, et al., Appl. Phys., 78, No. 8, 1059-1061 (2001).Google Scholar
  15. 15.
    C. H. Zhao, H. Sakuda, W. Wakamiya, and S. Yamaguchi, Chem. Eur. J., 15, No. 40, 10603-10612 (2009).CrossRefPubMedGoogle Scholar
  16. 16.
    H.-B. Fu and J.-N. Yao, J. Am. Chem. Soc., 123, No. 7, 1434-1439 (2001).CrossRefGoogle Scholar
  17. 17.
    B.-K. An, S.-K. Kwon, S.-D. Jung, et al., J. Am. Chem. Soc., 124, No. 48, 14410-14415 (2002).CrossRefPubMedGoogle Scholar
  18. 18.
    Y. Liu, Y. Youhong Tang, N. N. Barashkov, et al., J. Am. Chem. Soc., 132, No. 40, 13951-13953 (2010).CrossRefPubMedGoogle Scholar
  19. 19.
    N. N. Barashkov, Yu. E. Sakhno, V. M. Granchak, et al., International Conference on Modern Physical Chemistry for Advanced Materials, Kharkov, Ukraine, June 26-30, 2007, http://www.certh.gr/dat/F5BD8DC3/file.pdf.
  20. 20.
    Yuning Hong, W. Y. Lam Jacky, and Ben Zhong Tang, Chem. Soc. Rev., 40, No. 11, 5361-5388 (2011).CrossRefPubMedGoogle Scholar
  21. 21.
    A. A. Ishchenko and S. A. Shapovalov, J. Appl. Spectrosc., 71, No. 5, 605-629 (2004).CrossRefGoogle Scholar
  22. 22.
    A. D. Nekrasov, B. I. Shapiro, A. I. Tolmachev, et al., Khim. Vysok. Énerg., 45, No. 6, 563-569 (2011).Google Scholar
  23. 23.
    E. G. McRae and M. Kasha, J. Chem. Phys., 28, No. 4, 721-722 (1958).CrossRefGoogle Scholar
  24. 24.
    N. Kh. Ibrayev, S. A. Yeroshina, A. A. Ishchenko, and I. L. Mushkalo, Mol. Cryst. Liq. Cryst., 427, No. 1, 139-147 (2005).Google Scholar
  25. 25.
    N. Kh. Ibraev, A. A. Ishchenko, R. Kh. Karamysheva, and I. L. Mushkalo, J. Lumin., 90, Nos. 3/4, 81-88 (2000).CrossRefGoogle Scholar
  26. 26.
    H. Kasai, Y. Yoshikawa, T. Seko, et al., Mol. Cryst. Liq. Cryst., 294, No. 1, 173-176 (1997).CrossRefGoogle Scholar
  27. 27.
    H. Kasai, H, Kamatani, S. Okada, et al., Jpn. J. Appl. Phys., 35, Pt 2, No. 2B, L221-L223 (1996).Google Scholar
  28. 28.
    H. Kasai, H. Kamatani, Y. Yoshikawa, et al., Chem. Lett., 26, No. 11, 1181-1182 (1997).CrossRefGoogle Scholar
  29. 29.
    Y. Komai, H. Kasai, H. Hirakoso, et al., Mol. Cryst. Liq. Cryst., 322, No. 1, 167-172 (1998).CrossRefGoogle Scholar
  30. 30.
    Y. Xu, P. Xue, D. Xu, et al., Org. Biomol. Chem., 8, No. 19, 4289-4296 (2010).CrossRefPubMedGoogle Scholar
  31. 31.
    M. Martínez-Abadía, B. Robles-Hernández, M. R. de la Fuente, et al., Adv. Mater., 28, No. 31, 6586-6591 (2016).CrossRefPubMedGoogle Scholar
  32. 32.
    Xing-Liang Peng, Sergi Ruiz-Barragan, Ze-Sheng Li, et al., J. Mater. Chem. C, 4, No. 14, 2802-2810 (2016).CrossRefGoogle Scholar
  33. 33.
    M. Martínez-Abadía, S. Varghese, R. Giménez, and M. B. Ros, J. Mater. Chem. C, 4, No. 14, 2886-2893 (2016).CrossRefGoogle Scholar
  34. 34.
    D. Oelkrug, A. Tompert, J. Gierschner, et al., J. Phys. Chem. B, 102, No. 11, 1902-1907 (1998).CrossRefGoogle Scholar
  35. 35.
    M. M. Souza, G. Rumbles, I. R. Gould, et al., Synth. Met., 111/112, 539-543 (2000).CrossRefGoogle Scholar
  36. 36.
    C. Zhao, Z. Wang, Y. Yang, et al., Cryst. Growth Des., 12, No. 3, 1227-1231 (2012).CrossRefGoogle Scholar
  37. 37.
    Fuke Wang, Ming-Yong Han, Khine Yi Mya, et al., J. Am. Chem. Soc., 127, No. 29, 10350-10355 (2005).CrossRefPubMedGoogle Scholar
  38. 38.
    F. Ito, T. Sagawa, and H. Koshiyama, Res. Chem. Intermed., 41, No. 9, 6897-6906 (2015).CrossRefGoogle Scholar
  39. 39.
    N. N. Barashkov, T. V. Sakhno, R. N. Nurmukhametov, and O. A. Khakhel’, Usp. Khim., 66, No. 6, 579-593 (1993).Google Scholar
  40. 40.
    F. Ito, T. Kakiuchi, T. Sakano, and T. Nagamura, Phys. Chem. Chem. Phys., 12, No. 36, 10923-10927 (2010), doi:  https://doi.org/10.1039/c003023f.CrossRefPubMedGoogle Scholar
  41. 41.
    R. L. Penn and J. F. Banfield, Science, 281, No. 5379, 969-971 (1998).CrossRefPubMedGoogle Scholar
  42. 42.
    Y. Qian, S. Li, G. Zhang, et al., J. Phys. Chem. B, 111, No. 21, 5861-5868 (2007).CrossRefPubMedGoogle Scholar
  43. 43.
    Li Qiang Yan, Zhi Neng Kong, Yong Xia, and Zheng Jian Qi, New J. Chem., 40, No. 8, 7061-7067 (2016).CrossRefGoogle Scholar
  44. 44.
    S. Li, L. He, F. Xiong, et al., J. Phys. Chem. B, 108, No. 30, 10887-10892 (2004).CrossRefGoogle Scholar
  45. 45.
    C. Feng, J. Li, X. Han, et al., Faraday Discuss., 196, 163-176 (2017).CrossRefPubMedGoogle Scholar
  46. 46.
    R. Hu, E. Lager, and A. Aguilar-Aguilar, J. Phys. Chem. C, 113, No. 36, 15845-15853 (2009).CrossRefGoogle Scholar
  47. 47.
    A. Aguilar-Granda, S. Pérez-Estrada, A. E. Roa, et al., Cryst. Growth Des., 16, No. 6, 3435-3442 (2016), doi:  https://doi.org/10.1021/acs.cgd.6b00395.CrossRefGoogle Scholar
  48. 48.
    Kai Li, Yang Zhang, Bing Qiao, et al., RSC Adv., 7, No. 48, 30229-30241 (2017).CrossRefGoogle Scholar
  49. 49.
    S. K. Behera, A. Murkherjee, G. Sadhuragiri, et al., Faraday Disc., 196, 71-90 (2017).CrossRefGoogle Scholar
  50. 50.
    I. Manikandan, C. H. Chang, and C. L. Chen, Spectrochim. Acta A, 182, 58-66 (2017).CrossRefGoogle Scholar
  51. 51.
    M. Han, S. J. Cho, Y. Norikane, et al., Chemistry, 22, No. 12, 3971-3975 (2016).CrossRefPubMedGoogle Scholar
  52. 52.
    J. Mei, N. L. Leung, R. T. Kwok, et al., Chem. Rev., 115, No. 21, 11718-11940 (2015).CrossRefPubMedGoogle Scholar
  53. 53.
    B. Liu and R. Zhang, Faraday Discuss., 196, 461-472 (2017).CrossRefPubMedGoogle Scholar
  54. 54.
    Y. Hong, J. W. Y. Lam, and B. Z. Tang, Chem. Commun., No. 29, 4332-4353 (2009).Google Scholar
  55. 55.
    C. J. Bhongale, C.-W. Chang, E. W.-G. Diau, et al., Chem. Phys. Lett., 419, Nos. 4-6, 444-449 (2006).CrossRefGoogle Scholar
  56. 56.
    T. V. Sakhno, I. V. Korotkova, and O. A. Khakhel’, Teor. Éksp. Khim., 32, No. 4, 247-250 (1996). [Theor. Exp. Chem., 32, No. 4, 217-220 (1996) (English translation).]Google Scholar
  57. 57.
    T. V. Sakhno, I. V. Korotkova, and O. A. Khakhel’, Funct. Mater., 3, No. 4, 502-505 (1996).Google Scholar
  58. 58.
    T. V. Sakhno, I. V. Korotkova, and N. N. Barashkov, Zh. Fiz. Khim., 71, No. 5, 861-863 (1997).Google Scholar
  59. 59.
    H. Nie, K. Hu, Y. Cai, et al., Mater. Chem. Front., 1, No. 5, 1125-1129 (2017).CrossRefGoogle Scholar
  60. 60.
    Fan Bu, Erjing Wang, Qian Peng, et al., Chem. Eur. J., 21, No. 1, 1-11 (2015).CrossRefGoogle Scholar
  61. 61.
    J. Gierschner, L. Luer, B. Milian-Medina, et al., J. Phys. Chem. Lett., 4, No. 16, 2686-2697 (2013).CrossRefGoogle Scholar
  62. 62.
    H.-J. Egelhaaf, M. Brun, S. Reich, and D. Oelkrug, J. Mol. Struct., 267, No. 4, 297-302 (1992).CrossRefGoogle Scholar
  63. 63.
    Y. Zhang, L. Kong, J. Shi, et al., Chin. J. Chem., 33, No. 7, 701-704 (2015).CrossRefGoogle Scholar
  64. 64.
    Y. Zhang, H. Mao, L. Kong, et al., Dyes Pigments, 133, 354-362 (2016).CrossRefGoogle Scholar
  65. 65.
    A. G. Mirochnik, E. V. Fedorenko, D. Kh. Gizzatulina, and V. E. Karasev, Zh. Fiz. Khim., 81, No. 11, 2096-2099 (2007).Google Scholar
  66. 66.
    S. A. Tikhonov, V. I. Vovna, I. S. Osmushko, et al., Spectrochim. Acta A, 189, 563-570 (2018).CrossRefGoogle Scholar
  67. 67.
    X. Xu, S. Chen, L. Li, et al., J. Mater. Chem., 18, No. 22, 2555-2561 (2008).CrossRefGoogle Scholar
  68. 68.
    S. K. Rajagopal, A. M. Philip, K. Nagarajan, and M. Hariharan, Chem. Commun., 50, No. 63, 8644-8647 (2014).CrossRefGoogle Scholar
  69. 69.
    S. K. Rajagopan, V. S. Reddy, and M. Hariharan, Cryst. Eng. Commun., 18, No. 27, 5089-5094 (2016).CrossRefGoogle Scholar
  70. 70.
    L. G. Samsonova, N. I. Selivanov, and T. N. Kopylova, Opt. Spektroskop., 116, No. 1, 79-84 (2014).Google Scholar
  71. 71.
    M. L. Ferrer and F. del Monte, J. Phys. Chem. B, 109, No. 1, 80-86 (2005).CrossRefPubMedGoogle Scholar
  72. 72.
    G. Quian, B. Dai, M. Luo, et al., Chem. Mater., 20, No. 19, 6208-6216 (2008).CrossRefGoogle Scholar
  73. 73.
    W. Tang, Y. Xiang, and A. Tong, J. Org. Chem., 74, No. 5, 2163-2166 (2009).CrossRefPubMedGoogle Scholar
  74. 74.
    Xia Cao, Xi Zeng, Lan Mu, et al., Sensors Actuators B, 177, 493-499 (2013).CrossRefGoogle Scholar
  75. 75.
    H. Xiao, K. Chen, D. Cui, et al., New J. Chem., 38, No 6, 2386-2393 (2014).CrossRefGoogle Scholar
  76. 76.
    C. Niu, L. Zhao, T. Fang, et al., Langmuir, 30, No. 9, 2351-2359 (2014).CrossRefPubMedGoogle Scholar
  77. 77.
    J. Li, W. Yang, W. Zhou, et al., RSC Adv., 6, No. 42, 35833-35841 (2016).CrossRefGoogle Scholar
  78. 78.
    J. Luo, K. Song, F. L. Gu, et al., Chem. Sci., 2, No. 10, 2029-2034 (2011).CrossRefGoogle Scholar
  79. 79.
    N. L. C. Leung, N. Xie, W. Yuan, et al., Chem. Eur. J., 20, No. 47, 15349-15353 (2014).CrossRefPubMedGoogle Scholar
  80. 80.
    T. Nishiuchi, K. Tanaka, and Y. Yoshiyuki Kuwatani, et al., Chem. Eur. J., 19, No. 13, 4110-4116 (2013).CrossRefPubMedGoogle Scholar
  81. 81.
    C. Yuan, S. Saito, C. Camacho, et al., Chem. Eur. J., 20, No. 8, 2193-2200 (2014).CrossRefPubMedGoogle Scholar
  82. 82.
    C.-X. Yuan, X.-T. Tao, Y. Ren, et al., J. Phys. Chem. C, 111, No. 34, 12811-12816 (2007).CrossRefGoogle Scholar
  83. 83.
    J. Liu, Q. Meng, X. Zhang, et al., Chem. Commun., 49, No. 12, 1199-1201 (2013).CrossRefGoogle Scholar
  84. 84.
    K. S. N. Kamaldeep, S. Kaur, V. Bhalla, et al., J. Mater. Chem. A, 2, No. 22, 8369-8375 (2014).CrossRefGoogle Scholar
  85. 85.
    S. Kaur, A. Gupta, V. Bhalla, et al., J. Mater. Chem. C, 2, No. 35, 7356-7363 (2014).CrossRefGoogle Scholar
  86. 86.
    E. Cariati, V. Lanzeni, E. Tordin, et al., Phys. Chem. Chem. Phys., 13, No. 40, 18005-18014 (2011).CrossRefPubMedGoogle Scholar
  87. 87.
    Bin Wang, Xiaojuan Wang, Wenliang Wang, and Fengyi Liu, J. Phys. Chem. C, 120, No. 38, 21850-21857 (2016).CrossRefGoogle Scholar
  88. 88.
    N. J. Hestand and F. C. Spano, Accounts Chem. Res., 50, No. 2, 341-350 (2017).CrossRefGoogle Scholar
  89. 89.
    W. I. Gruzecki, J. Biol. Phys., 18, No. 2, 99-109 (1991).CrossRefGoogle Scholar
  90. 90.
    W. I. Gruzecki, B. Zelent, and R. M. Leblanc, Chem. Phys. Lett., 171, Nos. 5/6, 563-568 (1990).CrossRefGoogle Scholar
  91. 91.
    N. Ramesh and A. Patnaik, J. Phys. Chem. C, 120, No. 3, 1909-1917 (2016).CrossRefGoogle Scholar
  92. 92.
    A. A. Muenter, D. V. Brumbaugh, J. J. Apolito, et al., J. Phys. Chem., 96, No. 7, 2783-2790 (1992).CrossRefGoogle Scholar
  93. 93.
    J. Gierschner and S. Y. Park, J. Mater. Chem. C, 1, No. 37, 5818-5832 (2013).CrossRefGoogle Scholar
  94. 94.
    L. M. Nikolenko and A. V. Ivanchikhina, Khim. Vysok. Énerg., 44, No. 6, 1-9 (2010).Google Scholar
  95. 95.
    B. Bhattacharyya, A. Kundu, A. Das, et al., RSC Adv., 6, No. 26, 21907-21916 (2016).CrossRefGoogle Scholar
  96. 96.
    D. A. Nosova, E. P. Zarochentseva, S. O. Vysotskaya, et al., Opt. Spektroskop., 117, No. 6, 907-913 (2014).Google Scholar
  97. 97.
    B. I. Shapiro, L. S. Sokolova, V. A. Kuz’min, et al., Nanotechnol. in Russia, 7, Nos. 5/6, 205-212 (2012).CrossRefGoogle Scholar
  98. 98.
    B.-K. An, J. Gierschner, and S. Y. Park, Accounts Chem. Res., 45, No. 4, 544-554 (2012).CrossRefGoogle Scholar
  99. 99.
    S. Ozcelik and D. L. Akins, J. Phys. Chem. B, 103, No. 42, 8926-8929 (1999).CrossRefGoogle Scholar
  100. 100.
    B. Zhang, W. Diao, C. Bi, et al., J. Fluoresc., 22, No. 1, 1-7 (2012).CrossRefPubMedGoogle Scholar
  101. 101.
    T. V. Sakhno, I. V. Korotkova, N. N. Barashkov, and J. P. Ferraris, SPIE, Partenit, Crimea, Ukraine, 5-10 October, 1997, 3488, pp. 284-292.Google Scholar
  102. 102.
    D. Oelkrug, A. Tompert, H.-J. Egelhaaf, et al., Synth. Met., 83, No. 3, 231-237 (1996).CrossRefGoogle Scholar
  103. 103.
    F. Lange, D. Hohnholz, M. Leuze, et al., Synth. Met., 101, No. 1, 652-653 (1999).CrossRefGoogle Scholar
  104. 104.
    J. F. Lamère, N. Saffon, I. D. Santos, and S. Fery-Forgues, Langmuir, 26, No. 12, 10210-10217 (2010).CrossRefPubMedGoogle Scholar
  105. 105.
    L. Ravotto and P. Ceroni, Coord. Chem. Rev., 346, 62-76 (2017).CrossRefGoogle Scholar
  106. 106.
    V. Sathish, A. Ramdass, P. Thanasekaran, and K.-L. Lu, J. Photochem. Photobiol. C, 23, 25-44 (2015).CrossRefGoogle Scholar
  107. 107.
    P. Alam, S. Dash, C. Climent, et al., RSC Adv., 7, No. 10, 5642-5648 (2017).CrossRefGoogle Scholar
  108. 108.
    Yang Jiang, Guangfu Li, Weilong Che, et al., Chem. Commun., 53, No. 21, 3022-3025 (2017).CrossRefGoogle Scholar
  109. 109.
    G. G. Shan, H. B. Li, J. S. Qin, et al., Dalton Trans., 41, No. 32, 9590-9593 (2012).CrossRefPubMedGoogle Scholar
  110. 110.
    G. F. Li, Y. Wu, G. G. Shan, et al., Chem. Commun., 50, No. 53, 6977-6980 (2014).CrossRefGoogle Scholar
  111. 111.
    P. Thanasekaran, J. Y. Wu, B. Manimaran, et al., J. Phys. Chem. A, 111, No. 43, 10953-10960 (2007).CrossRefPubMedGoogle Scholar
  112. 112.
    V. M. Granchak, T. V. Sakhno, and S. Ya. Kuchmy, Teor. Éksp. Khim., 50, No. 1, 1-20 (2014) [Theor. Exp. Chem., 50, No. 1, 1-20 (2014) (English translation).]Google Scholar
  113. 113.
    J. L. Banal, J. M. White, K. P. Ghiggino, et al., Sci. Rep., 4, 4635 (2014).CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Kok-Haw Ong and Bin Liu, Molecules, 22, No. 6, 897 (2017), doi:  https://doi.org/10.3390/molecules22060897.
  115. 115.
    Guangxue Feng, T. K. Kwok Ryan, Ben Zhong Tang, and Bin Liu, Appl. Phys. Rev., 4, 021307 (2017).CrossRefGoogle Scholar
  116. 116.
    J. L. Banal, K. P. Ghiggino, and W. W. H. Wong, Phys. Chem. Chem. Phys., 16, No. 46, 25358-25363 (2014).CrossRefPubMedGoogle Scholar
  117. 117.
    J. L. Banal, J. M. White, T. W. Lam, et al., Adv. Energy Mater., 5, 1500818 (2015).CrossRefGoogle Scholar
  118. 118.
    J. L. Banal, H. Soleimaninejad, F. M. Jradi, et al., J. Phys. Chem. C, 120, No. 24, 12952-12958 (2016).CrossRefGoogle Scholar
  119. 119.
    B. Zhang, J. L. Banal, D. J. Jones, et al., Mater. Chem. Front., 2, No. 3, 615-619 (2018).CrossRefGoogle Scholar
  120. 120.
    Z. J. Zhao, J. W. Y. Lam, and B. Z. Tang, J. Mater. Chem., 22, No. 45, 23726-23740 (2012).CrossRefGoogle Scholar
  121. 121.
    Y. H. Liu, C. Mu, K. Jiang, et al., Adv. Mater., 27, No. 6, 1015-1020 (2015).CrossRefPubMedGoogle Scholar
  122. 122.
    Y. Hong, Methods Appl. Fluoresc., 4, 022003 (2016).CrossRefPubMedGoogle Scholar
  123. 123.
    W. Qin, Z. Yang, Y. Jiang, et al., Chem. Mater., 27, No. 11, 3892-3901 (2015).CrossRefGoogle Scholar
  124. 124.
    B. Liu, H. Nie, X. Zhou, et al., Adv. Function. Mater., 26, No. 5, 776-783 (2016).CrossRefGoogle Scholar
  125. 125.
    Z. L. Xie, C. J. Chen, S. D. Xu, et al., Angew. Chem. Int. Ed., 54, No. 24, 7181-7184 (2015).CrossRefGoogle Scholar
  126. 126.
    D. Zhao, Fan Fan, Cheng Juan, et al., Adv. Opt. Mater., 3, No. 2, 199-202 (2015).CrossRefGoogle Scholar
  127. 127.
    J. Liu, H. Su, L. Meng, et al., Chem. Sci., 3, No. 9, 2737-2747 (2012).CrossRefGoogle Scholar
  128. 128.
    G. Zhang, X. Zhang, Y. Zhang, et al., Sensors Actuators B, 221, 730-739 (2015).CrossRefGoogle Scholar
  129. 129.
    C. A. Huerta-Aguilar, P. Raj, P. Thangarasu, and N. Singh, RSC Adv., 6, No. 44, 37944-37952 (2016).CrossRefGoogle Scholar
  130. 130.
    Tang Guo, Xiaozheng Cao, Peng Ge, et al., Org. Biomol. Chem., 15, No. 20, 4375-4382 (2017).CrossRefGoogle Scholar
  131. 131.
    A. Malakar, M. Kumar, A. Reddy, et al., Photochem. Photobiol. Sci., 15, No. 7, 937-948 (2016), doi:  https://doi.org/10.1039/c6pp00122j.CrossRefPubMedGoogle Scholar
  132. 132.
    Dan Wang, Shu-Mu Li, Jian-Quan Zheng, et al., Inorg. Chem., 56, No. 2, 984-990 (2017).CrossRefPubMedGoogle Scholar
  133. 133.
    Y. R. Li, H. T. Zhou, W. Chen, et al., Tetrahedron, 72, No. 36, 5620-5625 (2016).CrossRefGoogle Scholar
  134. 134.
    T. Tian, X. Chen, H. Li, et al., Analyst, 138, No. 4, 991-994 (2013).CrossRefPubMedGoogle Scholar
  135. 135.
    T. Han, J. W. Lam, N. Zhao, et al., Chem. Commun., 49, No. 42, 4848-4850 (2013).CrossRefGoogle Scholar
  136. 136.
    Y. Cai, L. Li, Z. Wang, et al., Chem. Commun., 50, No. 64, 8892-8895 (2014).CrossRefGoogle Scholar
  137. 137.
    J. H. Wang, H. T. Feng, and Y. S. Zheng, Chem. Commun., 50, No. 77, 11407-11410 (2014).CrossRefGoogle Scholar
  138. 138.
    Ruoyu Zhang, Xiaolei Cai, Guang Feng, and Ben Liu, Faraday Discuss., 196, 363-375 (2017).Google Scholar
  139. 139.
    M. Wang, G. Zhang, D. Zhang, et al., J. Mater. Chem., 20, No. 10, 1858-1867 (2010).CrossRefGoogle Scholar
  140. 140.
    J. Liang, B. Z. Tang, and B. Liu, Chem. Soc. Rev., 44, No. 10, 2798-2811 (2015).CrossRefPubMedGoogle Scholar
  141. 141.
    H. Shi, J. Liu, J. Geng, et al., J. Am. Chem. Soc., 134, No. 23, 9569-9572 (2012).CrossRefPubMedGoogle Scholar
  142. 142.
    H. Shi, R. T. K. Kwok, J. Liu, et al., J. Am. Chem. Soc., 134, No. 43, 17972-17981 (2012).CrossRefPubMedGoogle Scholar
  143. 143.
    D. Ding, K. Li, B. Liu, and B. Z. Tang, Accounts Chem. Res., 46, No. 11, 2441-2453 (2013).CrossRefGoogle Scholar
  144. 144.
    R. T. Kwok, C. W. Leung, J. W. Lam, et al., Chem. Soc. Rev., 44, No. 13, 4228-4238 (2015).CrossRefPubMedGoogle Scholar
  145. 145.
    H. Gao, X. Zhao, and S. Chen, Molecules, 23, No. 2, 419-439 (2018).CrossRefGoogle Scholar
  146. 146.
    Y. Y. Yuan, C. J. Zhang, M. Gao, et al., Angew. Chem. Int. Ed., 54, No. 6, 1780-1786 (2015).CrossRefGoogle Scholar
  147. 147.
    Y. Y. Yuan, S. D. Xu, X. M. Cheng, et al., Angew. Chem. Int. Ed., 55, No. 22, 6457-6461 (2016).CrossRefGoogle Scholar
  148. 148.
    Y. Y. Yuan, C. J. Zhang, S. D. Xu, and B. Liu, Chem. Sci., 7, No. 3, 1862-1866 (2016).CrossRefPubMedGoogle Scholar
  149. 149.
    F. Hu, Y. Y. Huang, G. X. Zhang, et al., Anal. Chem., 86, No. 15, 7987-7995 (2014).CrossRefPubMedGoogle Scholar
  150. 150.
    G. X. Feng, Y. Y. Yuan, H. Fang, et al., Chem. Commun., 51, No. 62, 12490-12493 (2015).CrossRefGoogle Scholar
  151. 151.
    E. G. Zhao, Y. L. Chen, S. J. Chen, et al., Adv. Mater., 27, No. 33, 4931-4937 (2015).CrossRefPubMedGoogle Scholar
  152. 152.
    W. Qin, D. Dan, J. Z. Liu, et al., Adv. Funct. Mater., 22, No. 4, 771-779 (2012).CrossRefGoogle Scholar
  153. 153.
    K. Li, W. Qin, D. Ding, et al., Sci. Rep., 3, 1150-1156 (2013).CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    D. Ding, D. Mao, K. Li, et al., ACS Nano, 8, No. 12, 12620-12631 (2014).CrossRefPubMedGoogle Scholar
  155. 155.
    L. L. Yan, Y. Zhang, B. Xu, et al., Nanoscale, 8, No. 5, 2471-2487 (2016).CrossRefPubMedGoogle Scholar
  156. 156.
    J. Liu, C. Chen, S. Ji, et al., Chem. Sci., 8, No. 4, 2782-2789 (2017).CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • V. M. Granchak
    • 1
  • T. V. Sakhno
    • 2
  • I. V. Korotkova
    • 3
  • Yu. E. Sakhno
    • 2
  • S. Ya. Kuchmy
    • 1
  1. 1.L. V. Pysarzhevsky Institute of Physical Chemistry, National Academy of Sciences of UkraineKyivUkraine
  2. 2.Poltava University of Economics and TradePoltavaUkraine
  3. 3.Poltava State Agrarian AcademyPoltavaUkraine

Personalised recommendations