PLC-RF diversity: channel outage analysis

  • Frank Nonso IgboamaluEmail author
  • Alain Richard Ndjiongue
  • Hendrik Christoffel Ferreira


Signals from indoor access points in a wireless fidelity suffer from high attenuation as a result of the thick walls and metal structures in the multilevel-storey buildings where they are deployed. This is due to the scattering of the retransmitted signals by the thick walls and metal structures. Power line communication (PLC) technology is considered as a solution to overcoming this challenge. In this paper, a combination of the RF and PLC technologies is proposed for achieving signal transmission in indoor environments taking into account the presence characteristic of multilevel-storey buildings. Diversity Combining techniques, namely, selection combining (SC) and maximum ratio combining (MRC) are exploited to recover the retransmitted message, then the outage probability for both the SC and the MRC are proposed. Furthermore, we analyze the hybrid system estimated implementation cost.


Cascaded channel Channel model Power line communication Radio frequency 



  1. 1.
    Güzelgöz, S., Celebi, H. B., & Arsian, H. (2010) Analysis of a multi-channel receiver: Wireless and PLC reception. In Proceedings of the 18th European signal processing conference (pp. 1106–1110). IEEE.Google Scholar
  2. 2.
    Oliveira, T. R., Marques, C. A. G., Pereira, M. S., Netto, S. L., & Ribeiro, M. V. (2013) The characterization of hybrid PLC-wireless channels: A preliminary analysis. In Proceedings of the 17th IEEE ISPLC conference (pp. 98–102). April 2–4, Johannesburg, South Africa.Google Scholar
  3. 3.
    de Leonardo, M. B. A. D., Fernandes, V., de Filomeno, M. L., & Ribeiro, M. V. (2018). Hybrid PLC/wireless communication for smart grids and internet of things applications. IEEE Internet of Things Journal, 5(2), 655–667.CrossRefGoogle Scholar
  4. 4.
    Güzelgöz, S., Arslan, H., Islam, A., & Domijan, A. (2011). A review of wireless and PLC propagation channel characteristics for smart grid environments. Journal of Electrical and Computer Engineering, 2011, 15.CrossRefGoogle Scholar
  5. 5.
    Ndjiongue, A. R., Ferreira, H. C., Song, J., Yang, F., & Cheng, Ling. (2017). Hybrid PLC–VLC channel model and spectral estimation using a nonparametric approach. Transactions on Emerging Telecommunications Technologies, 28(12), e3224.CrossRefGoogle Scholar
  6. 6.
    Ndjiongue, A. R., Ngatched, T. M. N., & Ferreira, H. C. (2018). On the indoor VLC link evaluation based on the rician \( K \)-factor. IEEE Communications Letters, 22(11), 2254–2257.CrossRefGoogle Scholar
  7. 7.
    Khreishah, A., Shao, S., Gharaibeh, A., Ayyash, M., Elgala, Hany, & Ansari, Nirwan. (2018). A hybrid RF–VLC system for energy efficient wireless access. IEEE Transactions on Green Communications and Networking, 2(4), 932–944.CrossRefGoogle Scholar
  8. 8.
    Chowdhury, M. Z., Hasan, M. K., Shahjalal, M., Hossan, M. T., & Jang, Y. M. (2018) Optical wireless hybrid networks for 5G and beyond communications. In International conference on information and communication technology convergence (ICTC) (pp. 709–712). IEEE.Google Scholar
  9. 9.
    Lai, S. W., & Messier, G. G. (2012). Using the wireless and plc channels for diversity. IEEE Transactions on Communications, 60(12), 3865–3875.CrossRefGoogle Scholar
  10. 10.
    Dubey, A., Mallik, R. K., & Schober, R. (2014). Performance analysis of a power line communication system employing selection combining in correlated log-normal channels and impulsive noise. IET Communications, 8(7), 1072–1082.CrossRefGoogle Scholar
  11. 11.
    Mohammad Heggo, X., Zhu, S. S., & Huang, Y. (2017). White broadband power line communication: Exploiting the TVWS for indoor multimedia smart grid applications. International Journal of Communication Systems, 30(16), e3330.CrossRefGoogle Scholar
  12. 12.
    de Leonardo, M. B. A. D., Fernandes, V., & Ribeiro, . V. (2016) A discussion about hybrid PLC-wireless communication for smart grids. In Proceedings of the XXXIV simpósio Brasileiro de telecomunicationsções (pp. 848–852).Google Scholar
  13. 13.
    Oliveira, T. R., Picorone, A. A. M., Zeller, C. B., Netto, S. L., & Ribeiro, Moises  V. (2018). On the statistical characterization of hybrid PLC-wireless channels. Electric Power Systems Research, 163, 329–337.CrossRefGoogle Scholar
  14. 14.
    Fernandes, V., Finamore, W. A., Poor, H. V., & Ribeiro, M. V. (2017). The low-bit-rate hybrid power line/wireless single-relay channel. IEEE Systems Journal, 99, 1–12.Google Scholar
  15. 15.
    Oliveira, T. R., Andrade, F. J. A., da S Costa, L. G., Pereira, M. S., & Ribeiro, M. V. (2013) Measurement of hybrid PLC-wireless channels for indoor and broadband data communication. In Proceedings of the XXXI simpsio Brasileiro de telecommunications.Google Scholar
  16. 16.
    Sayed, M., Tsiftsis, T. A., & Al-Dhahir, N. (2017). On the diversity of hybrid narrowband-PLC/wireless communications for smart grids. IEEE Transactions on Wireless Communications, 16(7), 4344–4360.CrossRefGoogle Scholar
  17. 17.
    Sayed, M., & Al-Dhahir, N. (2016) Differential modulation diversity combining for hybrid narrowband-powerline, wireless smart grid communications. In Proceedings of the IEEE global conference on signal and information processing (pp. 876–880). December 7–9, Washington, DC, USA.Google Scholar
  18. 18.
    Gheth, W., Rabie, K. M., Adebisi, B., Ijaz, M., Harris, G., & Alfitouri, A. (2018) Hybrid power-line/wireless communication systems for indoor applications. In Proceedings of the 11th IEEE international symposium on communication systems, networks, and digital signal processing (pp. 1–6).Google Scholar
  19. 19.
    Sayed, M., & Al-Dhahir, N. (2014) Narrowband-PLC, wireless diversity for Smart Grid communications. In Proceedings of the IEEE global communications conference (pp. 2966–2971). December 8–12, Austin, TX, USA.Google Scholar
  20. 20.
    Lai, S. W., Shabehpour, N., Messier, G. G., & Lampe, L. (2014) Performance of wireless, power line media diversity in the office environment. In Proceedings of the IEEE global communications conference (pp. 2972–2976). December 8–12, Austin, TX, USA.Google Scholar
  21. 21.
    De Beer, A. S., Igboamalu, F. N., Sheri, A, Ferreira, H. C & Vinck, A. J. H. (2016) Contactless power line communications at 2.45 GHz. In Proceedings of the 20th IEEE ISPLC conference (pp. 42–45). March 20–23, Bottrop, Germany.Google Scholar
  22. 22.
    De Beer, A. S., Ferreira, H. C., & Vinck, A. J. H. (2014) Contactless power-line communications. In Proceedings of the 18th IEEE ISPLC conference (pp. 111–115). 30 March–2 Apr, 2014, Glasgow, Scotland, UK.Google Scholar
  23. 23.
    Samakande, T., Shongwe, T., de Beer, A. S., & Ferreira, H. C. (2018) The effect of coupling circuits on impulsive noise in power line communication. In Proceedings of the 18th IEEE ISPLC conference (pp. 1–5). April 8–11, Manchester, UK.Google Scholar
  24. 24.
    Alouini, M. S., & Goldsmith, A. J. (1999). Capacity of rayleigh fading channels under different adaptive transmission and diversity-combining techniques. IEEE Transactions on Vehicular Technology, 48(4), 1165–1181.CrossRefGoogle Scholar
  25. 25.
    Lee, W. C. Y. (2010). Mobile communications design fundamentals (Vol. 25). Hoboken: Wiley.Google Scholar
  26. 26.
    Winters, J. H. (1984). Optimum combining in digital mobile radio with cochannel interference. IEEE Transactions on Vehicular Technology, 33(3), 144–155.CrossRefGoogle Scholar
  27. 27.
    Alsusa, E., & Rabie, K. M. (2013). Dynamic peak-based threshold estimation method for mitigating impulsive noise in power-line communication systems. IEEE Transactions on Power Delivery, 28(4), 2201–2208.CrossRefGoogle Scholar
  28. 28.
    Zhidkov, S. V. (2003). Impulsive noise suppression in ofdm-based communication systems. IEEE Transactions on Consumer Electronics, 49(4), 944–948.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.University of JohannesburgJohannesburgSouth Africa

Personalised recommendations