Advertisement

Survey on artificial intelligence based techniques for emerging robotic communication

  • S. H. AlsamhiEmail author
  • Ou Ma
  • Mohd. Samar Ansari
Article
  • 69 Downloads

Abstract

This paper reviews the current development of artificial intelligence (AI) techniques for the application area of robot communication. The research of the control and operation of multiple robots collaboratively toward a common goal is fast growing. Communication among members of a robot team and even including humans is becoming essential in many real-world applications. The survey focuses on the AI techniques for robot communication to enhance the communication capability of the multi-robot team, making more complex activities, taking an appreciated decision, taking coordinated action, and performing their tasks efficiently. We present a comprehensive review of the intelligent solutions for robot communication which have been proposed in the literature in recent years. This survey contributes to a better understanding of the AI techniques for enhancing robot communication and sheds new lights on future research direction in the subject area.

Keywords

Artificial intelligence Robot Multi-robot team Robotic communication Internet of robotics things Ad-hoc network Swarm robotics UAV 

Notes

References

  1. 1.
    Akat, S. B., Gazi, V., & Marques, L. (2010). Asynchronous particle swarm optimization-based search with a multi-robot system: Simulation and implementation on a real robotic system. Turkish Journal of Electrical Engineering & Computer Sciences, 18(5), 749–764.Google Scholar
  2. 2.
    Al Islam, A. A., & Raghunathan, V. (2015). iTCP: An intelligent TCP with neural network based end-to-end congestion control for ad-hoc multi-hop wireless mesh networks. Wireless Networks, 21(2), 581–610.CrossRefGoogle Scholar
  3. 3.
    Al-Sakran, H. O. (2015). Intelligent traffic information system based on integration of internet of things and agent technology. International Journal of Advanced Computer Science and Applications (IJACSA), 6(2), 37–43.Google Scholar
  4. 4.
    Algabri, M., Mathkour, H., Mekhtiche, M. A., Bencherif, M. A., Alsulaiman, M., Arafah, M. A., et al. (2017). Wireless vision-based fuzzy controllers for moving object tracking using a quadcopter. International Journal of Distributed Sensor Networks, 13(4), 1550147717705549.CrossRefGoogle Scholar
  5. 5.
    Alsamhi, S., Ansari, M., Hebah, M., Ahmed, A., Hatem, A., & Alasali, M. (2018). Adaptive handoff prediction and appreciate decision using ANFIS between terrestrial communication and HAP. SCIREA Journal of Agriculture, 3(1), 19–33.Google Scholar
  6. 6.
    Alsamhi, S., Ma, O., & Ansari, M. (2018). Predictive estimation of the optimal signal strength from unmanned aerial vehicle over internet of things using ANN. arXiv preprint arXiv:1805.07614.
  7. 7.
    Alsamhi, S. H. (2015). Quality of service (QoS) enhancement techniques in high altitude platform based communication networks. Electronics Engineering Ph.D., p. 155.Google Scholar
  8. 8.
    Alsamhi, S. H., & Rajput, N. S. (2015). Implementation of call admission control technique in hap for enhanced qos in wireless network deployment. Telecommunication Systems, 1–11,  https://doi.org/10.1007/s11235-015-0108-4.
  9. 9.
    Alsamhi, S. H., & Rajput, N. S. (2015). An intelligent hand-off algorithm to enhance quality of service in high altitude platforms using neural network. Wireless Personal Communications, 82(4), 2059–2073.  https://doi.org/10.1007/s11277-015-2333-2.CrossRefGoogle Scholar
  10. 10.
    Alsamhi, S. H., & Rajput, N. S. (2016). An efficient channel reservation technique for improved QoS for mobile communication deployment using high altitude platform. Wireless Personal Communications, 91(3), 1095–1108.  https://doi.org/10.1007/s11277-016-3514-3.CrossRefGoogle Scholar
  11. 11.
    Alsheikh, M. A., Lin, S., Niyato, D., & Tan, H. P. (2014). Machine learning in wireless sensor networks: Algorithms, strategies, and applications. IEEE Communications Surveys & Tutorials, 16(4), 1996–2018.CrossRefGoogle Scholar
  12. 12.
    Arsénio, A., Serra, H., Francisco, R., Nabais, F., Andrade, J., & Serrano, E. (2014). Internet of intelligent things: Bringing artificial intelligence into things and communication networks. In F. Xhafa & N. Bessis (Eds.), Inter-cooperative collective intelligence: Techniques and applications (pp. 1–37). Berlin, Heidelberg: Springer.Google Scholar
  13. 13.
    Barriquello, C. H., e Silva, F. E. S., Bernardon, D. P., Canha, L. N., Ramos, M. J. D. S., & Porto, D. S. (2018). Fundamentals of wireless communication link design for networked robotics. https://www.intechopen.com/books/service-robots/fundamentals-of-wireless-communication-link-designfor-networked-robotics.
  14. 14.
    Bassil, Y. (2012). Neural network model for path-planning of robotic rover systems. arXiv preprint arXiv:1204.0183.
  15. 15.
    Bassil, Y. (2012). Service-oriented architecture for space exploration robotic rover systems. arXiv preprint arXiv:1204.0185.
  16. 16.
    Bekmezci, I., Ermis, M., & Kaplan, S. (2014). Connected multi UAV task planning for flying ad hoc networks. In 2014 IEEE international black sea conference on communications and networking (BlackSeaCom) (pp. 28–32).Google Scholar
  17. 17.
    Bianco, R., & Nolfi, S. (2004). Toward open-ended evolutionary robotics: Evolving elementary robotic units able to self-assemble and self-reproduce. Connection Science, 16(4), 227–248.CrossRefGoogle Scholar
  18. 18.
    Boillot, N., Dhoutaut, D., & Bourgeois, J. (2014). Using nano-wireless communications in micro-robots applications. In Proceedings of ACM the first annual international conference on nanoscale computing and communication (p. 10).Google Scholar
  19. 19.
    Cappelli, M. A. (2015). Regulation on safety and civil liability of intelligent autonomous robots: The case of smart cars.Google Scholar
  20. 20.
    Challita, U., Ferdowsi, A., Chen, M., & Saad, W. (2018). Artificial intelligence for wireless connectivity and security of cellular-connected UAVs. arXiv preprint arXiv:1804.05348.
  21. 21.
    Challita, U., Saad, W., & Bettstetter, C. (2018). Cellular-connected UAVs over 5G: Deep reinforcement learning for interference management. arXiv preprint arXiv:1801.05500.
  22. 22.
    Chen, M., & Leung, V. C. (2018). From cloud-based communications to cognition-based communications: A computing perspective. Computer Communications, 128, 74–79.CrossRefGoogle Scholar
  23. 23.
    Chen, M., Mozaffari, M., Saad, W., Yin, C., Debbah, M., & Hong, C. S. (2017). Caching in the sky: Proactive deployment of cache-enabled unmanned aerial vehicles for optimized quality-of-experience. IEEE Journal on Selected Areas in Communications, 35(5), 1046–1061.CrossRefGoogle Scholar
  24. 24.
    Chen, M., Saad, W., & Yin, C. (2017). Echo state learning for wireless virtual reality resource allocation in UAV-enabled LTE-U networks. arXiv preprint arXiv:1708.00921.
  25. 25.
    Chen, M., Saad, W., & Yin, C. (2017). Liquid state machine learning for resource allocation in a network of cache-enabled LTE-U UAVs. In GLOBECOM 2017–2017 IEEE global communications conference (pp. 1–6).Google Scholar
  26. 26.
    Chen, Y., & Hu, H. (2013). Internet of intelligent things and robot as a service. Simulation Modelling Practice and Theory, 34, 159–171.CrossRefGoogle Scholar
  27. 27.
    Chen, Y. F., Liu, M., Everett, M., & How, J. P. (2017). Decentralized non-communicating multiagent collision avoidance with deep reinforcement learning. In 2017 IEEE international conference on robotics and automation (ICRA) (pp. 285–292).Google Scholar
  28. 28.
    Dauphin, L., Adjih, C., Petersen, H., & Baccelli, E. (2017). Low-cost robots in the internet of things: Hardware, software & communication aspects. In Proceedings of the 2017 international conference on embedded wireless systems and networks (pp. 284–289).Google Scholar
  29. 29.
    Dawood, F., & Loo, C. K. (2016). Incremental episodic segmentation and imitative learning of humanoid robot through self-exploration. Neurocomputing, 173, 1471–1484.CrossRefGoogle Scholar
  30. 30.
    Di, M., & Joo, E. M. (2007). A survey of machine learning in wireless sensor netoworks from networking and application perspectives. In 2007 6th international conference on information, communications & signal processing (pp. 1–5).Google Scholar
  31. 31.
    Dinh-Van, N., Nashashibi, F., Thanh-Huong, N., & Castelli, E. (2017). Indoor intelligent vehicle localization using WiFi received signal strength indicator. In 2017 IEEE MTT-S international conference on microwaves for intelligent mobility (ICMIM) (pp. 33–36).Google Scholar
  32. 32.
    Doriya, R., Mishra, S., & Gupta, S. (2015). A brief survey and analysis of multi-robot communication and coordination. In 2015 international conference on computing, communication & automation (ICCCA) (pp. 1014–1021).Google Scholar
  33. 33.
    Dutta, V., & Zielinska, T. (2015). Networking technologies for robotic applications. arXiv preprint arXiv:1505.07593.
  34. 34.
    Elleuch, M., Kaaniche, H., & Ayadi, M. (2015). Exploiting neuro-fuzzy system for mobility prediction in wireless ad-hoc networks. In International work-conference on artificial neural networks (pp. 536–548).Google Scholar
  35. 35.
    Fernandes, L. C., Souza, J. R., Pessin, G., Shinzato, P. Y., Sales, D., Mendes, C., et al. (2014). Carina intelligent robotic car: Architectural design and applications. Journal of Systems Architecture, 60(4), 372–392.CrossRefGoogle Scholar
  36. 36.
    Ferranti, L., & Cuomo, F. (2017). Nano-wireless communications for microrobotics: An algorithm to connect networks of microrobots. Nano Communication Networks, 12, 53–62.CrossRefGoogle Scholar
  37. 37.
    Fink, J. (2011). Communication for teams of networked robots. Ph.D. thesis. University of Pennsylvania. https://repository.upenn.edu/cgi/viewcontent.cgi?article=1496&context=edissertations.
  38. 38.
    Gerla, M., Lee, E. K., Pau, G., & Lee, U. (2014). Internet of vehicles: From intelligent grid to autonomous cars and vehicular clouds. In 2014 IEEE world forum on internet of things (WF-IoT) (pp. 241–246).Google Scholar
  39. 39.
    Ghouti, L. (2016). Mobility prediction in mobile ad hoc networks using neural learning machines. Simulation Modelling Practice and Theory, 66, 104–121.CrossRefGoogle Scholar
  40. 40.
    Ghouti, L., Sheltami, T. R., & Alutaibi, K. S. (2013). Mobility prediction in mobile ad hoc networks using extreme learning machines. Procedia Computer Science, 19, 305–312.CrossRefGoogle Scholar
  41. 41.
    Girimonte, D., & Izzo, D. (2007). Artificial intelligence for space applications (pp. 235–253). London: Springer.Google Scholar
  42. 42.
    Glazunov, V., Utkin, L., Ryabinin, M., & Popov, S. (2017). The rules selection algorithm for network traffic of robot groups in intelligent transportation systems. In 2017 XX IEEE international conference on soft computing and measurements (SCM) (pp. 533–535).Google Scholar
  43. 43.
    Goeddel, R., & Olson, E. (2016). Learning semantic place labels from occupancy grids using CNNs. In 2016 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 3999–4004).Google Scholar
  44. 44.
    Grieco, L. A., Rizzo, A., Colucci, S., Sicari, S., Piro, G., Di Paola, D., et al. (2014). IoT-aided robotics applications: Technological implications, target domains and open issues. Computer Communications, 54, 32–47.CrossRefGoogle Scholar
  45. 45.
    Gu, D. L., Pei, G., Ly, H., Gerla, M., Zhang, B., & Hong, X. (2000). UAV aided intelligent routing for ad-hoc wireless network in single-area theater. In Wireless communications and networking conference, 2000. WCNC. 2000 IEEE, (Vol. 3, pp. 1220–1225).Google Scholar
  46. 46.
    Gueaieb, W., & Miah, M. S. (2008). An intelligent mobile robot navigation technique using RFID technology. IEEE Transactions on Instrumentation and Measurement, 57(9), 1908–1917.CrossRefGoogle Scholar
  47. 47.
    Guzey, H., Vignesh, N., Jagannathan, S., Dierks, T., & Acar, L. (2017). Distributed consensus-based event-triggered approximate control of nonholonomic mobile robot formations. American Control Conference (ACC), 2017, 3194–3199.Google Scholar
  48. 48.
    Hauert, S., Zufferey, J. C., & Floreano, D. (2009). Evolved swarming without positioning information: An application in aerial communication relay. Autonomous Robots, 26(1), 21–32.CrossRefGoogle Scholar
  49. 49.
    Hvizdoš, J., Vojtko, I., Koscelanský, M., Pavlov, J., Vaščák, J., & Sinčák, P. (2017). Applications of remote controlled robotics in the intelligent space. In 2017 IEEE 15th international symposium on applied machine intelligence and informatics (SAMI) (pp. 000117–000122).Google Scholar
  50. 50.
    Irizarry, J., Gheisari, M., Williams, G., & Roper, K. (2014). Ambient intelligence environments for accessing building information: A healthcare facility management scenario. Facilities, 32(3/4), 120–138.CrossRefGoogle Scholar
  51. 51.
    Jin, X. B., Su, T. L., Kong, J. L., Bai, Y. T., Miao, B. B., & Dou, C. (2018). State-of-the-art mobile intelligence: Enabling robots to move like humans by estimating mobility with artificial intelligence. Applied Sciences, 8(3), 379.CrossRefGoogle Scholar
  52. 52.
    Kelley, R., Wigand, L., Hamilton, B., Browne, K., Nicolescu, M., & Nicolescu, M. (2012). Deep networks for predicting human intent with respect to objects. In Proceedings of the seventh annual ACM/IEEE international conference on human–robot interaction (pp. 171–172).Google Scholar
  53. 53.
    Kubota, N., & Nishida, K. (2005). Fuzzy computing for communication of a partner robot based on imitation. In Proceedings of the 2005 IEEE international conference on robotics and automation, 2005. ICRA 2005 (pp. 4380–4385).Google Scholar
  54. 54.
    Lee, J. H., & Hashimoto, H. (2002). Intelligent space-concept and contents. Advanced Robotics, 16(3), 265–280.CrossRefGoogle Scholar
  55. 55.
    Li, H., Yang, S. X., & Seto, M. L. (2009). Neural-network-based path planning for a multirobot system with moving obstacles. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 39(4), 410–419.Google Scholar
  56. 56.
    Li, L., Ota, K., & Dong, M. (2018). Sustainable CNN for robotic: An offloading game in the 3D vision computation. IEEE Transactions on Sustainable Computing, 4, 67–76.CrossRefGoogle Scholar
  57. 57.
    Liu, H., Liu, S., & Zheng, K. (2018). A reinforcement learning-based resource allocation scheme for cloud robotics. IEEE Access, 6, 17215–17222.CrossRefGoogle Scholar
  58. 58.
    Liu, L., Liu, S., Zhang, Z., Yu, B., Tang, J., & Xie, Y. (2018). Pirt: A runtime framework to enable energy-efficient real-time robotic applications on heterogeneous architectures. arXiv preprint arXiv:1802.08359.
  59. 59.
    Louis, K. A. B., Tarun, K., Teja, T., & Kiran, B. S. (2017). Intelligence spy robot with wireless night vision camera using android application. International Journal for Modern Trends in Science and Technology, 3, 01–05.Google Scholar
  60. 60.
    Marconato, E. A., Rodrigues, M., Pires, R. d. M., Pigatto, D. F., Luiz Filho, C. Q., Pinto, A. R., Branco, K. R. (2017). Avens-a novel flying ad hoc network simulator with automatic code generation for unmanned aircraft system. In Proceedings of the 50th Hawaii international conference on system sciences.Google Scholar
  61. 61.
    Martins, G. S., Portugal, D., & Rocha, R. P. (2014). A comparison of general-purpose foss compression techniques for efficient communication in cooperative multi-robot tasks. In 2014 11th international conference on informatics in control, automation and robotics (ICINCO) (Vol. 2, pp. 136–147).Google Scholar
  62. 62.
    McGhan, C. L., Nasir, A., & Atkins, E. M. (2015). Human intent prediction using markov decision processes. Journal of Aerospace Information Systems., 12, 393–397.CrossRefGoogle Scholar
  63. 63.
    Mechraoui, A., Khan, Z. H., Thiriet, J. M., & Gentil, S. (2009). Co-design for wireless networked control of an intelligent mobile robot. In International conference on informatics in control, automation and robotics (ICINCO) (p. 7).Google Scholar
  64. 64.
    Messous, M. A., Sedjelmaci, H., & Senouci, S. M. (2017). Implementing an emerging mobility model for a fleet of uavs based on a fuzzy logic inference system. Pervasive and Mobile Computing, 42, 393–410.CrossRefGoogle Scholar
  65. 65.
    Messous, M. A., Senouci, S. M., & Sedjelmaci, H. (2016). Network connectivity and area coverage for UAV fleet mobility model with energy constraint. In Wireless communications and networking conference (WCNC), 2016 IEEE (pp. 1–6).Google Scholar
  66. 66.
    Min, B. C., Kim, Y., Lee, S., Jung, J. W., & Matson, E. T. (2016). Finding the optimal location and allocation of relay robots for building a rapid end-to-end wireless communication. Ad Hoc Networks, 39, 23–44.CrossRefGoogle Scholar
  67. 67.
    Mohamed, N., Al-Jaroodi, J., Jawhar, I., Noura, H., & Mahmoud, S. (2017). UAVFog: A UAV-based fog computing for internet of things. In 2017 IEEE SmartWorld, ubiquitous intelligence & computing, advanced & trusted computed, scalable computing & communications, cloud & big data computing, internet of people and smart city innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI) (pp. 1–8).  https://doi.org/10.1109/UIC-ATC.2017.8397657.
  68. 68.
    Mzahm, A. M., Ahmad, M. S., & Tang, A. Y. (2013). Agents of things (AoT): An intelligent operational concept of the internet of things (IoT). In 2013 13th international conference on intelligent systems design and applications (ISDA) (pp. 159–164).Google Scholar
  69. 69.
    Narasimhan, R., & Cox, D. C. (1998). A handoff algorithm for wireless systems using pattern recognition. In The ninth IEEE international symposium on personal, indoor and mobile radio communications (Vol. 1, pp. 335–339).  https://doi.org/10.1109/pimrc.1998.733570.
  70. 70.
    Niitsuma, M., Beppu, W., Korondi, P., Kovács, S., & Hashimoto, H. (2011). Monitoring system based on ethologically inspired human-robot communication in intelligent space. In 8th Asian control conference (ASCC) (pp. 701–705).Google Scholar
  71. 71.
    O’Shea, T. J., & Hoydis, J. (2017). An introduction to machine learning communications systems. arXiv preprint arXiv:1702.00832.
  72. 72.
    O’Shea, T. J., Karra, K., & Clancy, T. C. (2017). Learning approximate neural estimators for wireless channel state information. arXiv preprint arXiv:1707.06260.
  73. 73.
    Paliwal, M., & Kumar, U. A. (2009). Neural networks and statistical techniques: A review of applications. Expert systems with applications, 36(1), 2–17.CrossRefGoogle Scholar
  74. 74.
    Park, T., Abuzainab, N., & Saad, W. (2016). Learning how to communicate in the internet of things: Finite resources and heterogeneity. IEEE Access, 4, 7063–7073.CrossRefGoogle Scholar
  75. 75.
    Prieto, A., Becerra, J., Bellas, F., & Duro, R. J. (2010). Open-ended evolution as a means to self-organize heterogeneous multi-robot systems in real time. Robotics and Autonomous Systems, 58(12), 1282–1291.CrossRefGoogle Scholar
  76. 76.
    Rampinelli, M., Covre, V. B., de Queiroz, F. M., Vassallo, R. F., Bastos-Filho, T. F., & Mazo, M. (2014). An intelligent space for mobile robot localization using a multi-camera system. Sensors, 14(8), 15039–15064.CrossRefGoogle Scholar
  77. 77.
    Ray, P. P. (2016). Internet of robotic things: Concept, technologies, and challenges. IEEE Access, 4, 9489–9500.CrossRefGoogle Scholar
  78. 78.
    Razafimandimby, C., Loscri, V., & Vegni, A. M. (2016). A neural network and iot based scheme for performance assessment in internet of robotic things. In 2016 IEEE first international conference on internet-of-things design and implementation (IoTDI) (pp. 241–246).Google Scholar
  79. 79.
    Razafimandimby, C., Loscri, V., & Vegni, A. M. (2018). Towards efficient deployment in Internet of Robotic Things. In Integration, interconnection, and interoperability of IoT systems (pp. 21–37). Cham: Springer.Google Scholar
  80. 80.
    Razi, A., Wang, C., Almaraghi, F., Huang, Q., Zhang, Y., Lu, H., & Rovira-Sugranes, A. (2018). Predictive routing for wireless networks: Robotics-based test and evaluation platform. In 2018 IEEE 8th annual computing and communication workshop and conference (CCWC) (pp. 993–999).Google Scholar
  81. 81.
    Roy Chowdhury, A. (2017). IoT and robotics: A synergy. PeerJ Preprints, 5, e2760v1.Google Scholar
  82. 82.
    Salamat, B., & Tonello, A. M. (2017). Stochastic trajectory generation using particle swarm optimization for quadrotor unmanned aerial vehicles (UAVs). Aerospace, 4(2), 27.CrossRefGoogle Scholar
  83. 83.
    Sandry, E. (2015). Re-evaluating the form and communication of social robots. International Journal of Social Robotics, 7(3), 335–346.CrossRefGoogle Scholar
  84. 84.
    Schleich, J., Panchapakesan, A., Danoy, G., & Bouvry, P. (2013). UAV fleet area coverage with network connectivity constraint. In Proceedings of the 11th ACM international symposium on Mobility management and wireless access (pp. 131–138).Google Scholar
  85. 85.
    Scilimati, V., Petitti, A., Boccadoro, P., Colella, R., Di Paola, D., Milella, A., & Grieco, A. (2017). Industrial internet of things at work: A case study analysis in robotic-aided environmental monitoring. In IET wireless sensor systems.Google Scholar
  86. 86.
    Selma, B., & Chouraqui, S. (2013). Neuro-fuzzy controller to navigate an unmanned vehicle. SpringerPlus, 2(1), 188.CrossRefGoogle Scholar
  87. 87.
    Sharma, P., Liu, H., Wang, H., & Zhang, S. (2017). Securing wireless communications of connected vehicles with artificial intelligence. In 2017 IEEE international symposium on technologies for homeland security (HST) (pp. 1–7).Google Scholar
  88. 88.
    Sharma, V., Bennis, M., & Kumar, R. (2016). UAV-assisted heterogeneous networks for capacity enhancement. IEEE Communications Letters, 20(6), 1207–1210.CrossRefGoogle Scholar
  89. 89.
    Sharma, V., Chen, H. C., & Kumar, R. (2017). Driver behaviour detection and vehicle rating using multi-UAV coordinated vehicular networks. Journal of Computer and System Sciences, 86, 3–32.CrossRefGoogle Scholar
  90. 90.
    Sharma, V., & Kumar, R. (2015). An opportunistic cross layer design for efficient service dissemination over flying ad hoc networks (FANETs). In 2015 2nd international conference on electronics and communication systems (ICECS) (pp. 1551–1557).Google Scholar
  91. 91.
    Sharma, V., & Kumar, R. (2017). Cooperative frameworks and network models for flying ad hoc networks: A survey. In Concurrency and computation: Practice and experience (Vol. 29, no. 4).Google Scholar
  92. 92.
    Sharma, V., & Kumar, R. (2017). G-FANET: An ambient network formation between ground and flying ad hoc networks. Telecommunication Systems, 65(1), 31–54.CrossRefGoogle Scholar
  93. 93.
    Sharma, V., Kumar, R., & Rana, P. S. (2015). Self-healing neural model for stabilization against failures over networked UAVs. IEEE Communications Letters, 19(11), 2013–2016.CrossRefGoogle Scholar
  94. 94.
    Sharma, V., Sabatini, R., & Ramasamy, S. (2016). UAVs assisted delay optimization in heterogeneous wireless networks. IEEE Communications Letters, 20(12), 2526–2529.CrossRefGoogle Scholar
  95. 95.
    Sharma, V., Sabatini, R., Ramasamy, S., Srinivasan, K., & Kumar, R. (2016). EFF-FAS: Enhanced fruit fly optimization based search and tracking by flying ad hoc swarm. In Computing (IJAHUC).Google Scholar
  96. 96.
    Sharma, V., Srinivasan, K., Chao, H. C., Hua, K. L., & Cheng, W. H. (2017). Intelligent deployment of UAVs in 5G heterogeneous communication environment for improved coverage. Journal of Network and Computer Applications, 85, 94–105.CrossRefGoogle Scholar
  97. 97.
    Sharma, V., Srinivasan, K., Kumar, R., Chao, H. C., & Hua, K. L. (2017). Efficient cooperative relaying in flying ad hoc networks using fuzzy-bee colony optimization. The Journal of Supercomputing, 73, 1–31.CrossRefGoogle Scholar
  98. 98.
    Shibata, K. (2017). Communications that emerge through reinforcement learning using a (recurrent) neural network. arXiv preprint arXiv:1703.03543.
  99. 99.
    Skobelev, P., Simonova, E., Zhilyaev, A., & Travin, V. (2017). Application of multi-agent technology in the scheduling system of swarm of earth remote sensing satellites. Procedia Computer Science, 103, 396–402.CrossRefGoogle Scholar
  100. 100.
    Soni, B., & Sowmya, A. (2013). Victim detection and localisation in an urban disaster site. In 2013 IEEE international conference on robotics and biomimetics (ROBIO) (pp. 2142–2147).Google Scholar
  101. 101.
    Stender, M., Yan, Y., Karayaka, H. B., Tay, P., & Adams, R. (2017). Simulating micro-robots to find a point of interest under noise and with limited communication using particle swarm optimization. SoutheastCon, 2017, 1–8.Google Scholar
  102. 102.
    Stottler, D. (2010). Satellite communication scheduling, optimization, and deconfliction using artificial intelligence techniques. AIAA Infotech@ Aerospace 2010 p. 3424.Google Scholar
  103. 103.
    Tai, L., Li, S., & Liu, M. (2016). A deep-network solution towards model-less obstacle avoidance. In 2016 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 2759–2764).Google Scholar
  104. 104.
    Tai, L., & Liu, M. (2016). Deep-learning in mobile robotics-from perception to control systems: A survey on why and why not. arXiv preprint arXiv:1612.07139.
  105. 105.
    Tai, L., Zhang, J., Liu, M., Boedecker, J., & Burgard, W. (2016). A survey of deep network solutions for learning control in robotics: From reinforcement to imitation. arXiv preprint arXiv:1612.07139.
  106. 106.
    Tripathi, N. D., Reed, J. H., & Van Landingham, H. F. (1998). Pattern classification based handoff using fuzzy logic and neural nets. In 1998 IEEE international conference on communications, 1998. ICC 98. Conference record (Vol. 3, pp. 1733–1737).  https://doi.org/10.1109/icc.1998.683126.
  107. 107.
    Valente Klaine, P., Imran, M. A., Onireti, O., & Souza, R. D. (2017). A survey of machine learning techniques applied to self organizing cellular networks. IEEE Communications Surveys and Tutorials., 19, 2392–2431.CrossRefGoogle Scholar
  108. 108.
    Vermesan, O., Bröring, A., Tragos, E., Serrano, M., Bacciu, D., Chessa, S., et al. (2017). Internet of robotic things: Converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT platforms. In O. Vermesan & J. Bacquet (Eds.), Cognitive hyperconnected digital transformation: Internet of things intelligence evolution (pp. 1–35). River Publishers.Google Scholar
  109. 109.
    Vincent, P., & Rubin, I. (2004) A framework and analysis for cooperative search using UAV swarms. In Proceedings of the 2004 ACM symposium on applied computing (pp. 79–86).Google Scholar
  110. 110.
    Wang, Z., Mülling, K., Deisenroth, M. P., Ben Amor, H., Vogt, D., Schölkopf, B., et al. (2013). Probabilistic movement modeling for intention inference in human-robot interaction. The International Journal of Robotics Research, 32(7), 841–858.CrossRefGoogle Scholar
  111. 111.
    Wazid, M., Das, A. K., & Lee, J. H. (2018). Authentication protocols for the internet of drones: Taxonomy, analysis and future directions. Journal of Ambient Intelligence and Humanized Computing.  https://doi.org/10.1007/s12652-018-1006-x.
  112. 112.
    Yu, W. W. H., & Changhua, H. (2001). Resource reservation in wireless networks based on pattern recognition. In International joint conference on neural networks, 2001. Proceedings. IJCNN ’01 (Vol. 3, pp. 2264–2269).  https://doi.org/10.1109/ijcnn.2001.938519
  113. 113.
    Zaouche, L., Natalizio, E., & Bouabdallah, A. (2015). ETTAF: Efficient target tracking and filming with a flying ad hoc network. In Proceedings of the 1st international workshop on experiences with the design and implementation of smart objects (pp. 49–54).Google Scholar
  114. 114.
    Zhang, B., Liu, C. H., Tang, J., Xu, Z., Ma, J., & Wang, W. (2018). Learning-based energy-efficient data collection by unmanned vehicles in smart cities. IEEE Transactions on Industrial Informatics, 14(4), 1666–1676.CrossRefGoogle Scholar
  115. 115.
    Zhang, L., Diao, X., & Ma, O. (2017). A preliminary study on a robot’s prediction of human intention. In: 2017 IEEE 7th annual international conference on CYBER technology in automation, control, and intelligent systems (CYBER) (pp. 1446–1450). IEEE.Google Scholar
  116. 116.
    Zhang, X., Lütteke, F., Ziegler, C., & Franke, J. (2016). Self-learning RRT* algorithm for mobile robot motion planning in complex environments. In E. Menegatti, N. Michael, K. Berns, & H. Yamaguchi (Eds.), Intelligent autonomous systems 13. Advances in intelligent systems and computing (Vol. 302, pp. 57–69). Cham: Springer.Google Scholar
  117. 117.
    Zhong, X., & Zhou, Y. (2014). A reinforcement learning trained fuzzy neural network controller for maintaining wireless communication connections in multi-robot systems. Machine Intelligence and Bio-inspired Computation: Theory and Applications VIII, 9119, 15.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Aerospace EngineeringTsinghua UniversityBeijingChina
  2. 2.IBB UniversityIbbYemen
  3. 3.College of Engineering and Applied ScienceUniversity of CincinnatiCincinnatiUSA
  4. 4.Department of Electronics EngineeringAligarh Muslim UniversityAligarhIndia
  5. 5.Software Research InstituteAthlone Institute of TechnologyAthloneIreland

Personalised recommendations