Advertisement

Telecommunication Systems

, Volume 70, Issue 2, pp 295–308 | Cite as

An overview of RF energy harvesting and information transmission in cooperative communication networks

  • Festus Kehinde Ojo
  • Damilare Oluwole Akande
  • Mohd Fadzli Mohd SallehEmail author
Article
  • 97 Downloads

Abstract

Wireless energy harvesting and information transfer (WEHIT) is a new paradigm in cooperative communication networks. WEHIT enables energy constrained cooperative communication nodes to harvest the energy needed for information transmission from electromagnetic radiation sources. Energy harvesting via radio frequency (RF) signals reduces the reliance on the supply of power grid, which makes it suitable for deployment in cooperative networks given that RF signals can concurrently carry wireless energy and information. This paper presents a review on RF energy harvesting in cooperative communication networks and the various techniques to simultaneously achieve wireless information and power transfer (SWIPT). Moreover, application advantages and disadvantages are specified. The major challenges of the SWIPT approach are enumerated. Solutions to these challenges are highlighted for future research.

Keywords

Cooperative network RF energy harvesting Full-duplex relaying Half-duplex relaying SWIPT WEHIT 

Notes

Acknowledgements

Funding was provided by Research University (RU) (Grant No. 8014051).

References

  1. 1.
    Ali, A. N., Zhou, X., Durrani, S., & Kennedy, R. A. (2013). Relaying protocols for wireless energy harvesting and information processing. IEEE Transactions on Wireless Communications, 12(7), 3622–3636.CrossRefGoogle Scholar
  2. 2.
    Zhang, R., & Ho, C. K. (2013). MIMO broadcasting for simultaneous wireless information and power transfer. IEEE Transactions on Wireless Communication, 12(5), 1989–2001.CrossRefGoogle Scholar
  3. 3.
    Zhai, C., & Liu, J. (2015). Cooperative wireless energy harvesting and information transfer in stochastic networks. Eurasip Journal on Wireless Communications and Networking, 2015(44), 1–22.  https://doi.org/10.1186/s13638-015-0288-3.Google Scholar
  4. 4.
    Xu, J., & Zhang, R. (2014). Throughput optimal policies for energy harvesting wireless transmitters with non-ideal circuit power. IEEE Journal on Selected Areas in Communications, 32(2), 322–332.CrossRefGoogle Scholar
  5. 5.
    Chalise, B. K., Zhang, Y. D., & Amin, M. G. (2012). Energy harvesting in an OSTBC based amplify-and-forward MIMO relay system. In Proceedings of the 2012 IEEE international conference on acoustics, speech, and signal processing, ICASSP 2012 (pp. 3201–3204).Google Scholar
  6. 6.
    Fouladgar, A. M., & Simeone, O. (2012). On the transfer of information and energy in multi-user systems. IEEE Communications Letters, 16(11), 1733–1736.CrossRefGoogle Scholar
  7. 7.
    Luo, S., Zhang, R., & Lim, T. J. (2013). Optimal save-then-transmit protocol for energy harvesting wireless transmitters. IEEE Transactions on Wireless Communications, 12(3), 1196–1207.CrossRefGoogle Scholar
  8. 8.
    Liu, L., Zhang, R., & Chua, K. C. (2013). Wireless information and power transfer: A dynamic power splitting approach. IEEE Transactions on Communications, 61(9), 3990–4001.CrossRefGoogle Scholar
  9. 9.
    Hoang-Sy, N., Dinh-Thuan, D., Thanh-Sang, N., & Miroslav, V. (2017). Exploiting hybrid time switching-based and power splitting-based relaying protocol in wireless powered communication networks with outdated channel state information. AUTOMATIKA, 58(1), 111–118.CrossRefGoogle Scholar
  10. 10.
    Varshney, L. R. (2008). Transporting information and energy simultaneously. In Proceedings of the 2008 IEEE international symposium on information theory (pp. 1612–1616).Google Scholar
  11. 11.
    Zungeru, A. M., Ang, L. M., Prabaharan, S., & Seng, K. P. (2012). Radio frequency energy harvesting and management for wireless sensor networks. Green Mobile Devices Network: Energy Opt. Scav. Tech., Boca Raton: CRC Press (pp. 341–368).Google Scholar
  12. 12.
    Ju, H., & Zhang, R. (2014). Throughput maximization in wireless powered communication networks. IEEE Transactions on Wireless Communications, 13(1), 418–428.CrossRefGoogle Scholar
  13. 13.
    Vullers, R. J. M., Schaijk, R. V., Doms, I., Hoof, C. V., & Mertens, R. (2009). Micropower energy harvesting. Elsevier Solid-State Circuits, 53(7), 684–693.Google Scholar
  14. 14.
    Liu, K.-H., & Lin, P. (2015). Toward self-sustainable cooperative relays: State of the art and the future. IEEE Communications Magazine, 53(6), 56–62.CrossRefGoogle Scholar
  15. 15.
    Ulukus, S., Yener, A., Erkip, E., Simeone, O., Zorzi, M., Grover, P., et al. (2015). Energy harvesting wireless communications: A review of recent advances. IEEE Journal on Selected Areas in Communications, 33(3), 360–381.CrossRefGoogle Scholar
  16. 16.
    Niyato, D., Kim, D. I., Maso, M., & Han, Z. (2017). Wireless powered communication networks: Research directions and technological approaches. IEEE Wireless Communications, 24(6), 88–97.CrossRefGoogle Scholar
  17. 17.
    Jameel, F., Faisal, Haider, M. A. A., & Butt, A. A. (2017). A technical review of simultaneous wireless information and power transfer (SWIPT). In International symposium on recent advances in electrical engineering (RAEE) 2017 (pp. 1–6).Google Scholar
  18. 18.
    Xiao, L., Ping, W., Dusit, N., Dong, I. K., & Zhu, H. (2015). Wireless networks with RF energy harvesting: A contemporary survey. IEEE Communications Survey & Tutorial, 17(2), 1–34.CrossRefGoogle Scholar
  19. 19.
    Chen, H., Zhai, C., Li, Y., & Vucetic, B. (2018). Cooperative strategies for wireless-powered communications: An overview. IEEE Wireless Communications.  https://doi.org/10.1109/MWC.2017.1700245.Google Scholar
  20. 20.
    Ioannis, K., Stelios, T., Symeon, N., Gan, Z., Derrick, W. K. N., & Robert, S. (2014). Simultaneous wireless information and power transfer in modern communication systems. IEEE Communications Magazine, 52(11), 104–110.CrossRefGoogle Scholar
  21. 21.
    Erol-Kantarci, M., & Mouftah, H. T. (2012). Sure sense: Sustainable wireless rechargeable sensor networks for the smart grid. IEEE Wireless Communications, 19(3), 30–36.CrossRefGoogle Scholar
  22. 22.
    Erol-Kantarci, M., & Mouftah, H. T. (2012). Mission-aware placement of RF-based power transmitters in wireless sensor networks. In Proceedings of the IEEE symposium on computers and communications, ISCC 2012 (pp. 12–17).Google Scholar
  23. 23.
    Erol-Kantarci, M., & Mouftah, H. T. (2012). DRIFT: Differentiated RF power transmission for wireless sensor network deployment in the smart grid. In Proceedings of the 2012 IEEE globecom workshops, Anaheim (pp. 1491–1495).Google Scholar
  24. 24.
    Xun, Z., Rui, Z., & Chin, K. H. (2013). Wireless information and power transfer: Architecture design and rate-energy tradeoff. IEEE Transactions on Communications, 61(11), 4754–4767.CrossRefGoogle Scholar
  25. 25.
    Deepak, M., Swades, D., Soumya, J., Stefano, B., Kaushik, C., & Wendi, H. (2015). Smart RF energy harvesting communications: Challenges and opportunities. IEEE Communications Magazine, 53(4), 70–78.CrossRefGoogle Scholar
  26. 26.
    Ojo, F. K., & Salleh, M. F. M. (2018). Throughput analysis of a hybridized power- time splitting based relaying protocol for wireless information and power transfer in cooperative networks. IEEE Access.  https://doi.org/10.1109/ACCESS.2018.2828121.Google Scholar
  27. 27.
    Smith, J. R. (2013). Wirelessly powered sensor networks and computational RFID. New York, NY: Springer.CrossRefGoogle Scholar
  28. 28.
    Grover, P., & Sahai, A. (2010). Shannon meets Tesla: Wireless information and power transfer. In Proceedings of.the IEEE international symposium on information theory, ISIT2010 (pp. 2363–2367).Google Scholar
  29. 29.
    Liu, L., Zhang, R., & Chua, C. K. (2013). Wireless information transfer with opportunistic energy harvesting. IEEE Transactions on Wireless Communications, 12(1), 288–300.CrossRefGoogle Scholar
  30. 30.
    Xiang, Z., & Tao, M. (2012). Robust beamforming for wireless information and power transmission. IEEE Wireless Communications Letters, 1(4), 372–375.CrossRefGoogle Scholar
  31. 31.
    Sang, Q. N., & Hyung, Y. K. (2016). Generalized diversity combining of energy harvesting multiple antenna relay networks: Outage and throughput performance analysis. Annals of Telecommunications, 71(5), 265–277.Google Scholar
  32. 32.
    Ioannis, K., Shigenobu, S., Stelios, T., & Zhiguo, D. (2014). A low complexity antenna switching for joint wireless information and energy transfer in MIMO relay channels. IEEE Transactions on Communications, 62(5), 1577–1587.CrossRefGoogle Scholar
  33. 33.
    Perera, T. D. P., Jayakody, D. N. K., Sharma, S. K., Chatzinotas, S., & Li, J. (2018). Simultaneous wireless information and power transfer (SWIPT): Recent advances and future challenges. IEEE Communications Surveys & Tutorials, 20(1), 264–302.CrossRefGoogle Scholar
  34. 34.
    Chalise, B. K., Ma, W. K., Zhang, Y. D., Suraweera, H. A., & Amin, M. G. (2013). Optimum performance boundaries of OSTBC based AF-MIMO relay system with energy harvesting receiver. IEEE Transactions on Signal Processing, 61(17), 4199–4213.CrossRefGoogle Scholar
  35. 35.
    Moritz, G. L., Rebelatto, J. L., Souza, R. D., Ucha-Filho, B. F., & Li, Y. (2014). Time-switching uplink network-coded cooperative communication with downlink energy transfer. IEEE Transactions on Signal Processing, 62(19), 5009–5019.CrossRefGoogle Scholar
  36. 36.
    Huang, C., Zhang, R., & Cui, S. (2013). Throughput maximization for the Gaussian relay channel with energy harvesting constraints. IEEE Journal on Selected Areas in Communications, 31(8), 1469–1479.CrossRefGoogle Scholar
  37. 37.
    Son, P. N., Hyung, Y. K., & Alagan, A. (2016). Exact outage analysis of a decode-and-forward cooperative communication network with Nth best energy harvesting relay selection. Annals of Telecommunications, 71(5), 251–263.CrossRefGoogle Scholar
  38. 38.
    Mahama, S., Asiedu, D. K. P., & Lee, K. (2017). Simultaneous wireless information and power transfer for cooperative relay networks with battery. IEEE Access, 5, 13171–13178.CrossRefGoogle Scholar
  39. 39.
    Ding, Z., Perlaza, S. M., Esnaola, I., & Poor, H. V. (2014). Power allocation strategies in energy harvesting wireless cooperative networks. IEEE Transactions on Wireless Communications, 13(2), 846–860.CrossRefGoogle Scholar
  40. 40.
    Chen, H., Yonghui, L., Joao, L. R., Bartolomeu, F. U., & Branka, V. (2015). Harvest-then-cooperate: Wireless-powered cooperative communications. IEEE Transactions on Signal Processing, 63(7), 700–1711.CrossRefGoogle Scholar
  41. 41.
    Ho, C. K., & Zhang, R. (2012). Optimal energy allocation for wireless communications with energy harvesting constraints. IEEE Transactions on Signal Processing, 60(9), 4808–4818.CrossRefGoogle Scholar
  42. 42.
    Ding, H., Wang, X., Da costa, D. B., Chen, Y., & Gong, F. (2017). Adaptive time-switching based energy harvesting relaying protocols. IEEE Transactions on Communications, 65(7), 2821–2837.CrossRefGoogle Scholar
  43. 43.
    Wang, D., Zhang, R., Cheng, X., Quan, Z., & Yang, L. (2017). Joint power allocation and splitting (JoPAS) for SWIPT in doubly selective vehicular channels. IEEE Transactions on Green Communications and Networking, 1(4), 494–502.CrossRefGoogle Scholar
  44. 44.
    Liu, K. H. (2016). Performance analysis of relay selection for cooperative relays based on wireless power transfer with finite energy storage. IEEE Transactions on Vehicular Technology, 65(7), 5110–5121.CrossRefGoogle Scholar
  45. 45.
    Zheng, L., Zhai, C., & Liu, J. (2017). Alternate energy harvesting and information relaying in cooperative AF networks. Telecommunication Systems.  https://doi.org/10.1007/s11235-017-0399-8.Google Scholar
  46. 46.
    Zhai, C., Zheng, L., Lan, P., & Chen, H. (2018). Wireless powered cooperative communication using two relays: Protocol design and performance analysis. IEEE Transactions on Vehicular Technology, 67(4), 3598–3611.CrossRefGoogle Scholar
  47. 47.
    Hongwu, L., Kyeong, J. K., Kyung, S. K., & Poor, V. H. (2015). Power splitting based SWIPT with decode-and-forward full-duplex relaying. Cornell University Library. Arxiv: 1504.04697.Google Scholar
  48. 48.
    Wang, W., Wang, R., Duan, W., Feng, R., & Zhang, G. (2017). Optimal transceiver designs for wireless-powered full-duplex two-way relay networks with SWIPT. IEEE Access, 5, 22329–22343.CrossRefGoogle Scholar
  49. 49.
    Riihonen, T., Werner, S., & Wichman, R. (2009). Optimized gain control for single-frequency relaying with loop interference. IEEE Transactions on Wireless Communications, 8(6), 2801–2806.CrossRefGoogle Scholar
  50. 50.
    Hamazumi, H., Imamura, K., Iai, N., Shibuya, K., & Sasaki, M. (2000). A study of a loop interference canceller for the relay stations in an SFN for digital terrestrial broadcasting. In Proceedings of the 2000 IEEE global telecommunications conference, GLOBECOM 2000 (pp. 167–171).Google Scholar
  51. 51.
    Krikidis, I., Suraweera, H. A., Smith, P. J., & Yuen, C. (2012). Full-duplex relay selection for amplify-and-forward cooperative networks. IEEE Transactions on Wireless Communications, 11(12), 4381–4393.CrossRefGoogle Scholar
  52. 52.
    Hongwu, L., Kyeong, J. K., Kyung, S. K., & Poor, V. H. (2016). Power splitting-based SWIPT with decode-and-forward full-duplex relaying. IEEE Transactions on Wireless Communications, 15(11), 7561–7577.CrossRefGoogle Scholar
  53. 53.
    Okandeji, A. A., Khandaker, M. R. A., & Wong, K. (2016). Wireless information and power transfer in full-duplex communication systems. In Proceedings of the 2016 IEEE international conference on communications, ICC2016 (pp. 1–6).Google Scholar
  54. 54.
    Ju, H., & Zhang, R. (2014). Optimal resource allocation in full-duplex wireless-powered communication network. IEEE Transactions on Communications, 62(10), 3528–3540.CrossRefGoogle Scholar
  55. 55.
    Zeng, Y., & Zhang, R. (2015). Full-duplex wireless powered relay with self-energy recycling. IEEE Wireless Communications Letters, 4(2), 201–204.CrossRefGoogle Scholar
  56. 56.
    Riihonen, T., Werner, S., Wichman, R., & Zacarias, E. B. (2009). On the feasibility of full-duplex relaying in the presence of loop interference. In Proceedings of the 2009 IEEE 10th workshop on signal processing advances in wireless communications (pp. 275–279).Google Scholar
  57. 57.
    Bian, H., Fang, Y., Sun, B., & Li, Y. (2013). Co-time co-frequency full duplex for 802.11 WLAN, IEEE Standard 802.11-13/0765 r2. (2013, July).Google Scholar
  58. 58.
    Duarte, M., Sabharwal, A., Aggarwal, V., Jana, R., Ramakrishnan, K. K., Christopher, W. R., et al. (2014). Design and characterization of a full-duplex multi-antenna system for WiFi networks. IEEE Transactions on Vehicular Technology, 63(3), 1160–1177.CrossRefGoogle Scholar
  59. 59.
    Hong, S., Brand, J., Jung, I. C., Jain, M., Mehlman, J., Katti, S., et al. (2014). Applications of self-interference cancellation in 5G and beyond. IEEE Communications Magazines, 52(2), 114–121.CrossRefGoogle Scholar
  60. 60.
    Deng, Y., Kim, K. J., Duong, T. Q., Elkashlan, M., Karagiannidis, G. K., & Nallanathan, A. (2016). Full-duplex spectrum sharing in cooperative single carrier systems. IEEE Transactions on Cognitive Communications and Networking, 2(1), 68–82.CrossRefGoogle Scholar
  61. 61.
    George, A., Ropokis, M., Majid, B., Nicola M., & Luiz, A. D. (2017). Optimal power allocation for energy recycling assisted cooperative communications. In Proceedings of the 2017 IEEE wireless communications and networking conference workshops, WCNCW (pp. 1–6).Google Scholar
  62. 62.
    Kieu, T. N., Ngoc, L. N., Quoc, H. K., Duy, H. H., Dinh, T. D., Voznak, M., & Mikulec, M. (2016). A performance analysis in energy harvesting full-duplex relay. 2016 39th international conference on telecommunications and signal processing, TSP 2016, 161–164.  https://doi.org/10.1109/TSP.2016.7760850.
  63. 63.
    Zhongxiang, W., Sumei, S., Xu, Z., Yi, H., Linhao, D., & Dong, I. K. (2017). Wireless information and power transfer: Spectral efficiency optimization for asymmetric full-duplex relay systems. 2017 IEEE 85th vehicular technology conference (VTC Spring) (pp. 1-5).Google Scholar
  64. 64.
    Zheng, G. (2015). Joint beamforming optimization and power control for full-duplex MIMO two-way relay channel. IEEE Transactions on Signal Processing, 63(3), 555–566.CrossRefGoogle Scholar
  65. 65.
    Chen, H., Li, G., & Cai, J. (2017). Spectral–energy efficiency tradeoff in full-duplex two-way relay networks. IEEE Systems Journal, 99, 1–10.Google Scholar
  66. 66.
    Zhang, Z., Chen, Z., Shen, M., & Xia, B. (2016). Spectral and energy efficiency of multipair two-way full-duplex relay systems with massive MIMO. IEEE Journal on Selected Areas in Communications, 34(4), 848–863.CrossRefGoogle Scholar
  67. 67.
    Park, J. J., Moon, J. H., & Kim, D. I. (2016). Time-switching based in-band full duplex wireless powered two-way relay. In Proceedings of the 2016 URSI Asia-pacific radio science conference, URSI AP-RASC (pp. 438–441).Google Scholar
  68. 68.
    Okandeji, A. A., Khandaker, M. R. A., & Wong, K. K. (2016). Two-way beamforming optimization for full-duplex SWIPT systems. In Proceedings of the 2016 European signal processing conference, EUSIPCO (pp. 2375–2379).Google Scholar
  69. 69.
    Okandeji, A. A., Khandaker, M. R. A., Wong, K. K., & Zheng, Z. (2016). Joint transmit power and relay two-way beamforming optimization for energy harvesting full-duplex communications. In Proceedings of the 2016 IEEE globecom workshops (GC Wkshps) (pp. 1–6).Google Scholar
  70. 70.
    Meng-Lin, K., Li, W., Chen, Y., & Liu, K. J. R. (2016). Advances in energy harvesting communications: Past, present, and future challenges. IEEE Communications Surveys & Tutorials, 18(2), 1384–1412.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Electrical and Electronic EngineeringUniversiti Sains MalaysiaNibong TebalMalaysia

Personalised recommendations