Telecommunication Systems

, Volume 70, Issue 2, pp 193–229 | Cite as

Computing over encrypted spatial data generated by IoT

  • Suresh V. Limkar
  • Rakesh Kumar JhaEmail author


Proliferation of IoT devices produces the enormous amount of data that need to be stored on clouds. A main focus of this paper is to ensure the secrecy of data, while it is in transit through unsecure communication media from edge devices to cloud and to provide security to the data once it is stored on public cloud. A new techniques based on computing over encrypted data i.e. homomorphic encryption seems to be promising methods. However, most of the previous works supporting computing over encrypted data are neither efficient nor compatible with IoT data and real time spatial data streams because there is a huge difference between normal data and spatial data. In this paper, we proposed a framework for computing over IoT generated encrypted spatial data. In order to provide computation over encrypted data first it needs to be indexed in standard data structure. For indexing encrypted data, we used R tree and its variants. We also proposed a method of most efficient and scalable, parallel construction of R trees and its variants on real time encrypted spatial data. We fired spatial range queries on encrypted spatial data. Specifically, the spatial range query execution time over encrypted spatial data of our proposed scheme is extremely efficient which takes slightly more time as taken by normal spatial range query executed over non-encrypted real time spatial data. Our scheme is not only efficient, but also highly compatible and scalable with IoT generated spatial data. Moreover, we rigorously define the scalability, query performance time, analyze the security of our schemes, and also conduct extensive experiments with a real time spatial dataset to demonstrate the performance of our schemes.


Data security Cloud computing IoT Zetta ADS-B R tree MapReduce Apache Spark Homomorphic encryption 



The authors gratefully acknowledge the support provided by 5G and IoT Lab, DoECE, and TBIC-Shri Mata Vaishno Devi University, Katra, Jammu. The authors would also like to thank the anonymous reviewers for their constructive comments and suggestions to improve the quality of the paper.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.


  1. 1.
    Atzori, L., Iera, A., & Morabito, G. (2010). The internet of things: A survey. Computer Networks, 54(15), 2787–2805.Google Scholar
  2. 2.
    Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645–1660.Google Scholar
  3. 3.
  4. 4.
  5. 5.
    Eagle, N., & Greene, K. (2014). Reality mining: Using big data to engineer a better world (1st ed.). Cambridge: The MIT Press.Google Scholar
  6. 6.
    Madden, S. (2012). Going big on spatial data: A mobile systems perspective. In Keynote at 20th ACM SIGSPATIAL international conference on advances in geographic information systems, Redondo Beach, CA.Google Scholar
  7. 7.
    Lee, J. G., & Kang, M. (2015). Geospatial big data: Challenges and opportunities. Journal of Big Data Research, 2(2), 74–81.Google Scholar
  8. 8.
    Dasgupta, A. (2013). Big data: The future is in analytics., April 2013, Geospatial World.
  9. 9.
    Lapkin, A. (2012). Hype cycle for big data, 2012., July 2012.
  10. 10.
  11. 11.
    Song, D. X., Wagner, D., & Perrig, A. (2000). Practical techniques for searches on encrypted data. In Proceedings of IEEE SP (pp. 44–55).Google Scholar
  12. 12.
    Shahabi, C., Fan, L., Nocera, L., Xiong, L., & Li, M. (2015). Privacy-preserving inference of social relationships from location data: A vision paper. In Proceedings of ACM SIGSPATIAL GIS (pp. 1–4).Google Scholar
  13. 13.
  14. 14.
  15. 15.
    Katz, J., & Lindell, Y. (2007). Introduction to modern cryptography: Principles and protocols. Boca Raton, FL: CRC Press.Google Scholar
  16. 16.
    TechRadar\(^{{\rm TM}}\): Internet of things security, Q1 2017, A mix of new and existing technologies help secure IoT deployments, January 19, 2017.Google Scholar
  17. 17.
    Song, D., Wagner, D., & Perrig, A. (2000). Practical techniques for searches on encrypted data. In Proceedings of IEEE S&P’00.Google Scholar
  18. 18.
    Curtmola, R., Garay, J., Kamara, S., & Ostrovsky, R. (2006). Searchable symmetric encryption: Improved definitions and efficient constructions. In Proceedings of ACM CCS (pp. 79–88).Google Scholar
  19. 19.
    Kamara, S., Papamanthou, C., & Roeder, T. (2012). Dynamic searchable symmetric encryption. In Proceedings of ACM CCS (pp. 965–976).Google Scholar
  20. 20.
    Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Roşu, M.-C., & Steiner, M. (2013). Highly-scalable searchable symmetric encryption with support for Boolean queries. In Proceedings of CRYPTO (pp. 353–373).Google Scholar
  21. 21.
    Pappas, V., et al. (2014). Blind seer: A scalable private DBMS. In Proceedings of IEEE SP (pp. 359–374).Google Scholar
  22. 22.
    Cash, D., et al. (2014). Dynamic searchable encryption in very-large databases: Data structures and implementation. In Proceedings of NDSS (pp. 1–16).Google Scholar
  23. 23.
    Stefanov, E., Papamanthou, C., & Shi, E. (2014). Practical dynamic searchable encryption with small leakage. In Proceedings of NDSS.Google Scholar
  24. 24.
    Wong, W. K., Kao, B., Cheung, D. W. L., Li, R., & Yiu, S. M. (2014). Secure query processing with data interoperability in a cloud database environment. In Proceedings of ACM SIGMOD (pp. 1395–1406).Google Scholar
  25. 25.
    Lai, J., Zhou, X., Deng, R. H., Li, Y., & Chen, K. (2013). Expressive search on encrypted data. In Proceedings of ACM ASIA CCS (pp. 243–251).Google Scholar
  26. 26.
    Sun, W., et al. (2013). Privacy-preserving multi-keyword text search in the cloud supporting similarity-based ranking. In Proceedings of ACM AISA CCS (pp. 71–82).Google Scholar
  27. 27.
    Ghinita, G., & Rughinis, R. (2014). An efficient privacy-preserving system for monitoring mobile users: Making searchable encryption practical. In Proceedings of ACM CODASPY’14.Google Scholar
  28. 28.
    Wang, B., Li, M., Wang, H., & Li, H. (2015). Circular range search on encrypted spatial data. In Proceedings of IEEE CNS’15.Google Scholar
  29. 29.
    Zhu, H., Lu, R., Huang, C., Chen, L., & Li, H. (2015). An efficient privacy-preserving location based services query scheme in outsourced cloud. IEEE Transactions on Vehicular Technology, 65(9), 7729–7739.Google Scholar
  30. 30.
    Wang, B., Li, M., & Wang, H. (2016). Geometric range search on encrypted spatial data. IEEE Transactions on Information Forensics and Security, 11(4), 704–719.Google Scholar
  31. 31.
    Wang, B., Li, M., & Xiong, L. (2018). FastGeo: Efficient geometric range queries on encrypted spatial data. In IEEE transactions on dependable and secure computing (Vol. PP, No. 99, p. 1).Google Scholar
  32. 32.
    de Berg, M., Cheong, O., van Kreveld, M., & Overmars, M. (2008). Computational geometry: Algorithms and applications. New York: Springer.Google Scholar
  33. 33.
    Atallah, M. J., & Du, W. (2001). Secure multi-party computational geometry. In Proceedings of the international workshop on algorithms and data structures (pp. 165–179).Google Scholar
  34. 34.
    Du, W., & Atallah, M. J. (2001). Secure multi-party computation problems and their applications: A review and open problems. In Proceedings of new security paradigms workshop (pp. 13–22).Google Scholar
  35. 35.
    Narayanan, A., Thiagarajan, N., Lakhani, M., Hamburg, M., & Boneh, D. (2011). Location privacy via private proximity testing. In Proceedings of NDSS.Google Scholar
  36. 36.
    Šed-enka, J., & Gasti, P. (2014). Privacy-preserving distance computation and proximity testing on earth, done right. In Proceedings of ACM ASIA CCS (pp. 99–110).Google Scholar
  37. 37.
    Goldreich, O. (2004). Foundations of cryptography: Basic applications (Vol. 2). Cambridge: Cambridge University Press.Google Scholar
  38. 38.
    Azad, M. A., Bag, S., & Hao, F. (2017). M2M-REP: Reputation of machines in the internet of things. In Proceedings of the 12th international conference on availability, reliability and security (ARES ’17). ACM, New York, NY, USA, Article 28, 7.Google Scholar
  39. 39.
    Ajmal, M., Bag, S., Tabassum, S., & Hao, F. (2017). privy: Privacy preserving collaboration across multiple service providers to combat telecoms spam. In IEEE transactions on emerging topics in computing.Google Scholar
  40. 40.
    Azad, M. A., & Bag, S. (2017). Decentralized privacy-aware collaborative filtering of smart spammers in a telecommunication network. In Proceedings of the symposium on applied computing (SAC ’17) (pp. 1711–1717). New York, NY: ACM.Google Scholar
  41. 41.
    Khan, M. A., & Salah, K. (2018). IoT security: Review, blockchain solutions, and open challenges. Future Generation Computer Systems, 82, 395–411.Google Scholar
  42. 42.
    Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of things: A survey on enabling technologies, protocols, and applications. In IEEE communications surveys and tutorials (Vol. 17, no. 4, pp. 2347–2376). Fourthquarter.Google Scholar
  43. 43.
    Botta, A., de Donato, W., Persico, V., & Pescapé, A. (2014). On the integration of cloud computing and internet of things. In 2014 International conference on future internet of things and cloud, Barcelona (pp. 23–30).Google Scholar
  44. 44.
  45. 45.
  46. 46.
  47. 47.
  48. 48.
  49. 49.
  50. 50.
  51. 51.
  52. 52.
  53. 53.
  54. 54.
    Jiang, L., Da Li, X., Cai, H., Jiang, Z., Fenglin, B., & Boyi, X. (2014). An IoT-oriented data storage framework in cloud computing platform. IEEE Transactions on Industrial Informatics, 10(2), 1443–1451.Google Scholar
  55. 55.
  56. 56.
  57. 57.
    Guttman, A. (1984). R-trees: A dynamic index structure for spatial searching. In Proceedings of ACM SIGMOD international conference on management of data.Google Scholar
  58. 58.
    Sellis, T., Roussopoulos, N., & Faloutsos, C. (1987). The R+-tree: A dynamic index for multidimensional objects. In Proceedings of the 13th international conference on very large databases (VLDB).Google Scholar
  59. 59.
    Beckmann, N., Kriegel, H.-P., Schneider, R., & Seeger, B. (1990). The R*-tree: An efficient and robust access method for points and rectangles. In Proceedings of ACM SIGMOD international conference on management of data.Google Scholar
  60. 60.
    Nievergelt, J., et al. (1984). The grid file: An adaptable, symmetric multikey file structure. ACM Transactions on Database Systems, 9(1), 38–71.Google Scholar
  61. 61.
    Kalojanov, J., & Slusallek, P. (2009). A parallel algorithm for construction of uniform grids. In Proceedings of the 1st ACM conference on high performance graphics—HPG ’09 (New York, New York, USA, 2009) (p. 23).Google Scholar
  62. 62.
    Yang, K., et al. (2007). In-memory grid files on graphics processors. In Proceedings of the 3rd international workshop on data management on new hardware—DaMoN ’07 (p. 1).Google Scholar
  63. 63.
    Finkel, R. A., & Bentley, J. L. (1974). Quad trees a data structure for retrieval on composite keys. Acta Informatica, 4(1), 1–9.Google Scholar
  64. 64.
    Samet, H. (2006). Foundations of multidimensional and metric data structures. Burlington: Morgan Kaufmann Publishers Inc.Google Scholar
  65. 65.
    Yi, K. (2008). Encyclopedia of algorithms. New York: Springer.Google Scholar
  66. 66.
    Aljafer, H., Malik, Z., Alodib, M., & Rezgui, A. (2014). A brief overview and an experimental evaluation of data confidentiality measures on the cloud. Journal of Innovation in Digital Ecosystems, 1(1–2), 1–11.Google Scholar
  67. 67.
    Acar, A., Aksu, H., Selcuk Uluagac, A., & Conti, M. (2017). A survey on homomorphic encryption schemes: theory and implementation. CoRR arXiv:1704.03578
  68. 68.
    Liu, J., Mesnager, S., & Chen, L. (2016). Partially homomorphic encryption schemes over finite fields. In C. Carlet, M. Hasan, & V. Saraswat (Eds.), Security, privacy, and applied cryptography engineering. SPACE 2016. Lecture notes in computer science (Vol. 10076). Cham: Springer.Google Scholar
  69. 69.
    Kaosar, M. G., Paulet, R., & Yi, X. (2012). Fully homomorphic encryption based two-party association rule mining. Data and Knowledge Engineering, 76, 1–15.Google Scholar
  70. 70.
    Rivest, R. L., Shamir, A., & Adleman, L. (1978). A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM, 21(2), 120–126.Google Scholar
  71. 71.
    Paillier, P. (1999). Public-key cryptosystems based on composite degree residuosity classes. In J. Stern (Ed.), Advances in cryptology (EUROCRYPT 1999). Lecture notes in computer science (Vol. 1592, pp. 223–238). Berlin: Springer.Google Scholar
  72. 72.
    Mani, M., Shah, K., & Gunda, M. (2013). Enabling secure database as a service using fully homomorphic encryption: Challenges and opportunities. arXiv preprint arXiv:1302.2654.
  73. 73.
    Lee, C.-C., Chung, P.-S., & Hwang, M.-S. (2013). A survey on attribute-based encryption schemes of access control in cloud environments. International Journal of Network Security, 15(4), 231–240.Google Scholar
  74. 74.
    Liu, X., Zhang, Y., Wang, B., & Yan, J. (2013). Mona: Secure multi-owner data sharing for dynamic groups in the cloud. IEEE Transactions on Parallel and Distributed Systems, 24(6), 1182–1191.Google Scholar
  75. 75.
    Liu, Q., Wang, G., & Wu, J. (2010). Efficient sharing of secure cloud storage services. In 2010 IEEE 10th international conference on computer and information technology (CIT) (pp. 922–929). IEEE.Google Scholar
  76. 76.
    Yu, S., Wang, C., Ren, K., & Lou, W. (2010). Attribute based data sharing with attribute revocation. In Proceedings of the 5th ACM symposium on information, computer and communications security (pp. 261–270). ACM.Google Scholar
  77. 77.
    Yang, X., Du, W., Wang, X., & Wang, L. (2013). Fully secure attribute-based encryption with non-monotonic access structures. In 2013 5th international conference on intelligent networking and collaborative systems (pp. 521–527). Xi’an.Google Scholar
  78. 78.
    Shuci, J., Weibin, G., & Guisheng, F. (2017). Hierarchy attribute-based encryption scheme to support direct revocation in cloud storage. In 2017 IEEE/ACIS 16th international conference on computer and information science (ICIS) (pp. 869–874).Google Scholar
  79. 79.
    Prabhakar, D. M., & Joseph, K. S. (2013). A new approach for providing data security and secure data transfer in cloud computing. IJCTT, 4(5), 1202–1207.Google Scholar
  80. 80.
    Seo, J. H., & Cheon, J. H. (2011). Fully secure anonymous hierarchical ldentity based encryption with constant size cipher texts. IACR Cryptology ePrint Archive, 2011, 21.Google Scholar
  81. 81.
    Baek, J., Newmarch, J., Safavi-Naini, R., & Susilo, W (2004). A survey of identity-based cryptography. In Proceedings of the 10th Annual Conference for Australian Unix User’s Group (AUUG 2004) (pp. 95–102).Google Scholar
  82. 82.
    Parsha, S. K., & Pasha, M. K. (2012). Enhancing data access security in cloud computing using hierarchical identity based encryption (hibe). International Journal of Scientific and Engineering Research, 3(5), 5.Google Scholar
  83. 83.
    Wang, G., Liu, Q., & Wu, J. (2011). Achieving fine-grained access control for secure data sharing on cloud servers. Concurrency and Computation Practice and Experience, 23(12), 1443–1464.Google Scholar
  84. 84.
    Dong, X., Yu, J., Luo, Y., Chen, Y., Xue, G., & Li, M. (2013). Achieving secure and efficient data collaboration in cloud computing. In 2013 IEEE/ACM 21st international symposium on quality of service (IWQoS) (pp. 1–6). IEEE.Google Scholar
  85. 85.
    Fontaine, C., & Galand, F. (2007). A survey of homomorphic encryption for nonspecialists. EURASIP J. Inf. Secur. Article 15(January 2007).Google Scholar
  86. 86.
    Rivest, R. L., Shamir, A., & Adleman, L. (1978b). A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM, 21(2), 120–126.Google Scholar
  87. 87.
    Goldwasser, S., & Micali, S. (1982). Probabilistic encryption & how to play mental poker keeping secret all partial information. In Proceedings of the fourteenth annual ACM symposium on Theory of computing (pp. 365–377). ACM.Google Scholar
  88. 88.
    ElGamal, T. (1985). A public key cryptosystem and a signature scheme based on discrete logarithms. In G. R. Blakley, & D. Chaum (Eds.), Advances in cryptology (CRYPTO 1984). Lecture notes in computer science (Vol. 196, pp. 10–18). Berlin: Springer.Google Scholar
  89. 89.
    Benaloh, J. (1994). Dense probabilistic encryption. In Proceedings of the workshop on selected areas of cryptography (pp. 120–128).Google Scholar
  90. 90.
    Naccache, D., & Stern, J. (1998). A new public key cryptosystem based on higher residues. In Proceedings of the 5th ACM conference on computer and communications security (pp. 59–66). ACM.Google Scholar
  91. 91.
    Okamoto, T., & Uchiyama, S. (1998). A new public-key cryptosystem as secure as factoring. In Advances in cryptology—EUROCRYPT’98 (pp. 308–318). Springer.Google Scholar
  92. 92.
    Paillier, P. (1999). Public-key cryptosystems based on composite degree residuosity classes. In Advances in cryptology—EUROCRYPT’99 (pp. 223–238). Springer.Google Scholar
  93. 93.
    Yao, A. C. (1982). Protocols for secure computations. In Proceedings of the 23rd Annual Symposium on Foundations of Computer Science (SFCS ’82) (pp. 160–164). Washington, DC: IEEE Computer Society.Google Scholar
  94. 94.
    Sander, T., Young, A., & Yung. M. (1999). Non-interactive crypto computing for NC1. In 40th annual symposium on foundations of computer science (pp. 554–566).Google Scholar
  95. 95.
    Boneh, D., Goh, E. J., & Nissim, K. (2005). Evaluating 2-DNF formulas on ciphertexts. In J. Kilian (Ed.), Theory of cryptography (TCC 2005). Lecture notes in computer science (Vol. 3378, pp. 325–341). Berlin: Springer.Google Scholar
  96. 96.
    Ishai, Y., & Paskin, A. (2007). Evaluating branching programs on encrypted data. In S. P. Vadhan (Ed.), Theory of cryptography (TCC 2007). Lecture notes in computer science (Vol. 4392, pp. 575–594). Berlin: Springer.Google Scholar
  97. 97.
    Gentry, C. (2009). A fully homomorphic encryption scheme. Ph.D. dissertation. Stanford University.Google Scholar
  98. 98.
    Van Dijk, M., Gentry, C., Halevi, S., & Vaikuntanathan, V. (2010). Fully homomorphic encryption over the integers. In Advances in cryptology—EUROCRYPT 2010 (pp. 24–43). Springer.Google Scholar
  99. 99.
    Brakerski, Z., & Vaikuntanathan, V. (2011). Fully homomorphic encryption from ring-LWE and security for key dependent messages. In Advances in cryptology—CRYPTO 2011 (pp. 505–524). Springer.Google Scholar
  100. 100.
    López-Alt, A., Tromer, E., & Vaikuntanathan, V. (2012). On-the-fly multiparty computation on the cloud via multikey fully homomorphic encryption. In Proceedings of the forty-fourth annual ACM symposium on theory of computing (pp. 1219–1234). ACM.Google Scholar
  101. 101.
    Gjøsteen, K. (2004). Subgroup membership problems and public key cryptosystems. Ph.D. Dissertation, Norwegian University of Science and Technology.
  102. 102.
    Galbraith, S., Gebregiyorgis, S., & Murphy, S. (2016). Algorithms for the approximate common divisor problem. LMS Journal of Computation and Mathematics, 19(A), 58–72.Google Scholar
  103. 103.
    Atmospheric and space flight vehicle coordinate systems, ANSI/AIAA R-004-1992.Google Scholar
  104. 104.
    Stevens, B. L., & Lewis, F. L. (1992). Aircraft control and simulation. New York: Wiley.Google Scholar
  105. 105.
    Zipfel, P. H. (2000). Modeling and simulation of aerospace vehicle dynamics. AIAA education series. Reston, Virginia.Google Scholar
  106. 106.
    Moon, B., Jagadish, H. V., Faloutsos, C., & Saltz, J. H. (2001). Analysis of the clustering properties of the hilbert space-filling curve. IEEE Transactions on Knowledge and Data Engineering, 13(1), 124–141.Google Scholar
  107. 107.
    Zhou, X., Abel, D. J., & Truffet, D. (1998). Data partitioning for parallel spatial join processing. GeoInformatica, 2(2), 175–204.Google Scholar
  108. 108.
    Muthukrishnan, S., Poosala, V., & Suel, T. (1999). On rectangular partitionings in two dimensions: Algorithms, complexity, and applications. In ICDT (pp. 236–256).Google Scholar
  109. 109.
    Scheuermann, P., Weikum, G., & Zabback, P. (1998). Data partitioning and load balancing in parallel disk systems. The VLDB Journal, 7(1), 48–66.Google Scholar
  110. 110.
    Nguyen Thai, B., & Olasz, A. (2015). Raster data partitioning for supporting distributed GIS processing. In The international archives of the photogrammetry, remote sensing and spatial information sciences, volume XL-3/W3, 2015 ISPRS geospatial week 2015, 28 Sep–03 Oct 2015, La Grande Motte, France.Google Scholar
  111. 111.
    Aji, A., Vo, H., & Wang, F. (2015). Effective spatial data partitioning for scalable query processing. CoRR arXiv:1509.00910
  112. 112.
    Vo, H., Aji, A., & Wang, F. (2014). SATO: A spatial data partitioning framework for scalable query processing. In Proceedings of the 22nd ACM SIGSPATIAL international conference on advances in geographic information systems (SIGSPATIAL ’14) (pp. 545–548). New York, NY: ACM.Google Scholar
  113. 113.
    Hershberger, J., Shrivastava, N., Suri, S., & Toth, C. D. (2006). Adaptive spatial partitioning for multidimensional data streams. Algorithmica, 46(1), 97–117.Google Scholar
  114. 114.
    Akdogan, A., Indrakanti, S., Demiryurek, U., & Shahabi, C. (2015). Cost-efficient partitioning of spatial data on cloud. In 2015 IEEE international conference on big data (big data), Santa Clara, CA (pp. 501–506).Google Scholar
  115. 115.
    Ferhatosmanoglu, H., Agrawal, D., Egecioglu, Ö., & El Abbadi, A. (2005). Optimal data-space partitioning of spatial data for parallel I/O. Distributed and Parallel Databases, 17(1), 75–101.Google Scholar
  116. 116.
    Dean, J., & Ghemawat, S. (2008). MapReduce: Simplified data processing on large clusters. Communications of the ACM, 51, 107–113.Google Scholar
  117. 117.
    Apache Hadoop Project. Open source software for reliable, scalable, distributed computing [EB/OL] [2010-09-18].
  118. 118.
  119. 119.
  120. 120.
  121. 121.
  122. 122.
    Lee, D. T., & Preparata, F. P. (1984). Computational geometry: A survey. IEEE Transactions on Computers, C–33(12), 1072–1101.Google Scholar
  123. 123.
  124. 124.
  125. 125.
  126. 126.
    Hill, M. D., & Marty, M. R. (2008). Amdahl’s law in the multicore era. Computer, 41(7), 33–38.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Electronics and Communication EngineeringShri Mata Vaishno Devi UniversityKatraIndia

Personalised recommendations