Advertisement

Telecommunication Systems

, Volume 70, Issue 1, pp 97–104 | Cite as

3D WLS hybrid and non hybrid localization using TOA, TDOA, azimuth and elevation

  • Nadhir Ben HalimaEmail author
  • Hatem Boujemâa
Article
  • 52 Downloads

Abstract

In this paper, we propose a Three Dimensional (3D) Weighted Least Square (WLS) estimation of mobile position using Time Of Arrival (TOA), Time Difference Of Arrival (TDOA), Direction of Arrival (DOA) given by azimuth and elevation measurement. We present both hybrid and non hybrid localization techniques. Hybrid localization techniques use a combination of TOA, TDOA and DOA whereas non hybrid localization use only TOA or TDOA or DOA measurement. This is the first paper to tackle the problem of 3D hybrid localization using TOA, TDOA, azimuth and elevation. We also present a theoretical performance analysis of the hybrid localization technique where the covariance matrix of the WLS estimator is derived in closed form expression. The theoretical derivation is valid for any distribution of the observation noise. We show that the WLS estimator is unbiased and equivalent to the Maximum Likelihood estimator when the observation noise is Gaussian. We also optimize the localization accuracy by optimizing the base station location in order to minimize the Mean Square Error. Base station location optimization to enhance localization accuracy has not been yet proposed.

Keywords

Hybrid localization TOA TDOA DOA Azimuth Elevation 

Notes

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. 1.
    Tomic, S., Marikj, M., Beko, M., Dinis, R., & Orfao, N. (2015). Hybrid RSS-AoA technique for 3-D node localization in wireless sensor networks. In International wireless communications and mobile computing conference (IWCMC), pp 1277– 1282.  https://doi.org/10.1109/IWCMC.2015.7289266.
  2. 2.
    Kashuba, S., Novikov, V., Trach, B., & Pryshchepa, T. (2016). Hybrid localization method for sensor networks with low nodes density. In 4th International conference on methods and systems of navigation and motion control (MSNMC), pp 76–79.  https://doi.org/10.1109/MSNMC.2016.7783110.
  3. 3.
    AlHajri, M. I., Goian, A., Darweesh, M., AlMemari, R., Shubair, R. M., Weruaga, L., & Kulaib, A.R. (2015). Hybrid RSS-DOA technique for enhanced WSN localization in a correlated environment. In International conference on information and communication technology research (ICTRC), pp 238–241.  https://doi.org/10.1109/ICTRC.2015.7156466.
  4. 4.
    Sharma, Yogesh, & Gulhane, Veena. (2015). Hybrid mechanism for multiple user indoor localization using smart antenna. In 2015 fifth international conference on advanced computing and communication technologies, pp 602–607.  https://doi.org/10.1109/ACCT.2015.24.
  5. 5.
    Chan, Y. T., Chan, F., Read, W., Jackson, B. R., & Lee, B. H. (2014). Hybrid localization of an emitter by combining angle-of-arrival and received signal strength measurements. In IEEE 27th canadian conference on electrical and computer engineering (CCECE), pp 1– 5. 10.1109/CCECE.2014.6900968,Google Scholar
  6. 6.
    Muswieck , B. S., Russi, J. L., & Heckler, M. V. T. (2013). Hybrid method uses RSS and AoA to establish a low-cost localization system. In Fourth argentine symposium and conference on embedded systems (SASE/CASE), pp. 1–6.  https://doi.org/10.1109/SASE-CASE.2013.6636770.
  7. 7.
    Kulaib, A. R., Shubair, R. M., Al-Qutayri, M. A., Ng, & Jason W. P. (2013) . Investigation of a hybrid localization technique using received signal strength and direction of arrival. In IEEE 20th international conference on electronics, circuits, and systems (ICECS), pp 189–192.  https://doi.org/10.1109/ICECS.2013.6815386.
  8. 8.
    Dai, Fan, Liu, Yaping, & Chen, Lin. (2012). A hybrid localization algorithm for improving accuracy based on RSSI/AOA in wireless network. In International conference on computer science and service system, pp 631–634.  https://doi.org/10.1109/CSSS.2012.163.
  9. 9.
    Prince, Gregary B., & Little, Thomas D. C. (2012). A two phase hybrid RSS/AoA algorithm for indoor device localization using visible light. In IEEE global communications conference (GLOBECOM), pp 3347–3352.  https://doi.org/10.1109/GLOCOM.2012.6503631.
  10. 10.
    Jing-min, C., Sham, H., Yu-fei, G., Qun, W., & Qiang, X. (2015). Multidimensional scaling algorithm of localization with hybrid TOA and AOA measurements. In 10th international conference on information, communications and signal processing (ICICS), pp 1–4.  https://doi.org/10.1109/ICICS.2015.7459843.
  11. 11.
    Horiba, M., Okamoto, E., Shinohara, T., & Matsumura, K. (2013). An improved NLOS detection scheme for hybrid-TOA/AOA-based localization in indoor environments. In IEEE international conference on ultra-wideband (ICUWB), pp 37–42.  https://doi.org/10.1109/ICUWB.2013.6663819.
  12. 12.
    Ding, G., Tan, Z., Zhang, L., Zhang, Z., & Zhang, J. (2012). Hybrid TOA/AOA cooperative localization in non-line-of-sight environments. In IEEE 75th vehicular technology conference (VTC Spring), pp 1–5./  https://doi.org/10.1109/VETECS.2012.6239884.
  13. 13.
    Meng, W, Xiao, W, & Xie, L. (2011). Distributed algorithm for hybrid TOA/DOA-based source localization. In 6th IEEE conference on industrial electronics and applications, pp 1046–1049.  https://doi.org/10.1109/ICIEA.2011.5975741.
  14. 14.
    Van de Velde, S., Arora, G., Vallozzi, L., Rogier, H., & Steendam, H. (2015). Cooperative hybrid localization using Gaussian processes and belief propagation. In IEEE international conference on communication workshop (ICCW), pp 785–790.  https://doi.org/10.1109/ICCW.2015.7247276.
  15. 15.
    Panichcharoenrat, T., & Lee, W. (2014). Two hybrid RSS/TOA localization techniques in cognitive radio system. In 2014 6th international conference on knowledge and smart technology (KST), pp 23–28.  https://doi.org/10.1109/KST.2014.6775388.
  16. 16.
    Wang, Y., Zheng, F., Wiemeler, M., Xiong, W., & Kaiser, T. (2013). Reference selection for hybrid TOA/RSS linear least squares localization. In IEEE 78th vehicular technology conference (VTC Fall), pp 1–5.  https://doi.org/10.1109/VTCFall.2013.6692388.
  17. 17.
    Shubair, R. M., & Elayan, H. (2015). Enhanced WSN localization of moving nodes using a robust hybrid TDOA-PF approach. In 11th international conference on innovations in information technology (IIT), pp 122 - 127.  https://doi.org/10.1109/INNOVATIONS.2015.7381526.
  18. 18.
    Liu, L., & Mavidi, G. (2014). Hybrid localization algorithm in wireless sensor networks and its application in building monitoring. In IIAI 3rd international conference on advanced applied informatics, pp 97–102.  https://doi.org/10.1109/IIAI-AAI.2014.30.
  19. 19.
    Liu, L., & Mavidi, G. (2013). An hybrid senor localization algorithm for wireless sensor networks. In IEEE international conference on systems, man, and cybernetics, pp 1087–1092.  https://doi.org/10.1109/SMC.2013.189.
  20. 20.
    Gholoobi , A., & Stavrou, S. (2013). A hybrid TDoA-ToA localization method. ICT, 2013, 1–4.  https://doi.org/10.1109/ICTEL.2013.6632087.
  21. 21.
    Yassin, A., Awad, M., & Nasser, Y. (2013). On the hybrid localization in heterogeneous networks with lack of hearability. In ICT, p. 1–5.  https://doi.org/10.1109/ICTEL.2013.6632158.
  22. 22.
    Piovesan, Nicola, & Erseghe, Tomaso. (2016). Cooperative Localization in WSNs: A Hybrid Convex/non-Convex Solution. IEEE Transactions on Signal and Information Processing over Networks, PP(99), 1–1.  https://doi.org/10.1109/TSIPN.2016.2639442.Google Scholar
  23. 23.
    Oliva, G., Laoudias, C., Pascucci, F., Setola, R., & Panayiotou, C. G. (2014). Hybrid sensor networks localization dealing with range-capable and range-free nodes. In International conference on indoor positioning and indoor navigation (IPIN), pp 281–290.  https://doi.org/10.1109/IPIN.2014.7275494.
  24. 24.
    Ferreira, B. Q., Gomes, J., & Costeira, J. P. (2015). A unified approach for hybrid source localization based on ranges and video. In IEEE international conference on acoustics, speech and signal processing (ICASSP), pp. 2879–2883.  https://doi.org/10.1109/ICASSP.2015.7178497.
  25. 25.
    Liu, Y., Chen, J., Xu, Z., Zhang, J., & Yang, Y. (2016). An improved hybrid localization algorithm for wireless sensor networks. In 8th international conference on intelligent human-machine systems and cybernetics (IHMSC), Vol. 01, pp. 456–459.  https://doi.org/10.1109/IHMSC.2016.216.
  26. 26.
    Cruz, P. J., Sadler, B. M., & Fierro, R. (2016). Sensor localization using hybrid RF/optical wireless communications for an aerial data mule. In American control conference (ACC), pp. 7085–7091.  https://doi.org/10.1109/ACC.2016.7526790.
  27. 27.
    Sahin, A., Eroglu, Y. S., Gven, I., Pala, N., & Yksel, M. (2015). Hybrid 3-D localization for visible light communication systems. Journal of Lightwave Technology, 33(22), 4589–4599.  https://doi.org/10.1109/JLT.2015.2477502.CrossRefGoogle Scholar
  28. 28.
    Hasani, M., Talvitie, J., Sydnheimo, L., Lohan, E.-S., & Ukkonen, L. (2015). Hybrid WLAN-RFID indoor localization solution utilizing textile tag. IEEE Antennas and Wireless Propagation Letters, 14, 1358–1361.  https://doi.org/10.1109/LAWP.2015.2406951.CrossRefGoogle Scholar
  29. 29.
    Bargshady, N., Pahlavan, K., Alsindi, N. A. (2015). Hybrid WiFi/UWB, cooperative localization using particle filter. In International conference on computing, networking and communications (ICNC), pp 1055–1060.  https://doi.org/10.1109/ICCNC.2015.7069494.
  30. 30.
    Kharidia, S. A., Ye, Q., Sampalli, S., Cheng, J., Du, H., & Wang, L. (2014). HILL: A hybrid indoor localization scheme. In 10th international conference on mobile ad-hoc and sensor networks, pp. 201–206.  https://doi.org/10.1109/MSN.2014.34.
  31. 31.
    Krishna, C. R., Yadav, P. S. (2014). A hybrid localization scheme for underwater wireless sensor networks. In International conference on issues and challenges in intelligent computing techniques (ICICT), pp. 579–582.  https://doi.org/10.1109/ICICICT.2014.6781345.
  32. 32.
    Ziskind, I., & Wax, M. (1987). Maximum likelihood estimation via the alternating projection maximization algorithm. In IEEE international conference on acoustics, speech, and signal processing, ICASSP ’87. Vol 12, pp. 2280–2283.  https://doi.org/10.1109/ICASSP.1987.1169388.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Computer Science and Engineering at YanbuTaibah UniversityMadinahSaudi Arabia
  2. 2.COSIM Research LaboratoryHigher School of Communications of TunisAryanahTunisia

Personalised recommendations