Telecommunication Systems

, Volume 70, Issue 1, pp 27–35 | Cite as

Multiple-high altitude platforms aided system architecture for achieving maximum last mile capacity in satellite communication

  • P. G. SudheeshEmail author
  • Maurizio Magarini
  • P. Muthuchidambaranathan


Satellite communication provides services to users over wide area. However, the propagation delay and the link budget associated with the long path make the communication difficult. Better link budget and smaller user antennas make high-altitude platform (HAP) based communication one of the favourite choice to last mile users over satellite connectivity. HAPs with overlapped service area form an interference limited system. To this end, interference alignment is proposed as promising solution to maximize capacity between multiple HAPs and ground stations. In this context, explicit expressions for system’s sum-rate and bit error rate (BER) are derived. The sum-rate and BER performance of the proposed scheme are studied for different Rician factors representing different geographical locations. Monte Carlo simulations are used to validate the analytical expressions.


High altitude platform Interference alignment Degrees of freedom 


  1. 1.
    Albagory, Y., & Abbas, A. E. (2013). Smart cell design for high altitude platforms communication. AEU-International Journal of Electronics and Communications, 67(9), 780–786.CrossRefGoogle Scholar
  2. 2.
    Mohammed, A., Mehmood, A., Pavlidou, F. N., & Mohorcic, M. (2011). The role of high-altitude platforms (HAPs) in the global wireless connectivity. Proceedings of the IEEE, 99(11), 1939–1953.CrossRefGoogle Scholar
  3. 3.
    Mohorcic, M., Grace, D., Kandus, G., & Tozer, T. (2004). Broadband communications from aerial platform networks. In An overview of CAPANINA, IST mobile and wireless communications summit (pp. 27–30)Google Scholar
  4. 4.
    Grace, D., & Tozer, T. C. (2001). High-altitude platforms for wireless communications. Electronics and Communication Engineering Journal, 13(3), 127–137.CrossRefGoogle Scholar
  5. 5.
    Albagory, Y., & Said, O. (2015). Performance enhancement of high-altitude platforms wireless sensor networks using concentric circular arrays. AEU-International Journal of Electronics and Communications, 69(1), 382–388.CrossRefGoogle Scholar
  6. 6.
    Holis, J., & Pechac, P. (2008). Coexistence of terrestrial and HAP 3G networks during disaster scenarios. Radioengineering, 17(4), 1–7.Google Scholar
  7. 7.
    Yuan, C., Lin, M., Ouyang, J., & Bu, Y. (2015). Beamforming schemes for hybrid satellite-terrestrial cooperative networks. AEU-International Journal of Electronics and Communications, 69(8), 1118–1125.Google Scholar
  8. 8.
    Celcer, T., Javornik, T., Mohorcic, M., & Kandus, G. (2009). Virtual multiple input multiple output in multiple high-altitude platform constellations. IET Communications, 11(3), 1704–1715.CrossRefGoogle Scholar
  9. 9.
    Dong, F., He, Y., Nan, H., Zhang, Z., Wang, J. (2015). System capacity analysis on constellation of interconnected HAP networks. In IEEE fifth international conference on big data and cloud computing (BDCloud) (pp. 154–159).Google Scholar
  10. 10.
    Grace, D., & Mohorcic, M. (2011). Broadband communications via high-altitude platforms. Hoboken: Wiley.Google Scholar
  11. 11.
    Liu, Y., Grace, D., & Mitchell, P. D. (2009). Exploiting platform diversity for GoS improvement for users with different high altitude platform availability. IEEE Transactions on Wireless Communications, 8(1), 196–203.CrossRefGoogle Scholar
  12. 12.
    Jafar, S. A., & Shamai, S. (2008). Degrees of freedom region of the MIMO X channel. IEEE Transactions on Information Theory, 54(1), 151–170.CrossRefGoogle Scholar
  13. 13.
    Cadambe, V. R., & Jafar, S. A. (2009). Interference alignment and the degrees of freedom of wireless networks. IEEE Transactions Information Theory, 55(9), 3893–3908.CrossRefGoogle Scholar
  14. 14.
    Zajic, A. (2012). Mobile-to-mobile wireless channels. Norwood: Artech House.Google Scholar
  15. 15.
    Cadambe, V., & Jafar, S. (2008). Interference alignment and degrees of freedom of the K-user interference channel. IEEE Transactions on Information Theory, 54(8), 3425–3441.CrossRefGoogle Scholar
  16. 16.
    Jafar, S. A. (2011). Interference alignment: a new look at signal dimensions in a communication network. Foundations and Trends in Communication and Information Theory, 7(1), 1–136.CrossRefGoogle Scholar
  17. 17.
    Mahmoud, A., El-Khamy, M., & Elsayed, K. (2012). Interference alignment performance on MIMO X channels with imperfect channel knowledge. In Proceedings of international workshop on signal processing advances in wireless communications (pp. 239–243).Google Scholar
  18. 18.
    Sudheesh, P. G., Magarini, M., Muthuchidambaranathan, P. (2016) Achieving maximum system capacity in multiple-high altitude platforms through interference alignment. In Proceedings of international conference on industrial and information systems (ICIIS-2016), Roorkee.Google Scholar
  19. 19.
    Sudheesh, P. G., Sharma, N., Magarini, M., Muthuchidambaranathan, P. (2017). Interference alignment in multiple-high altitude platforms based communication with a generalized long distance line of sight channel model. In Proceedings of international conference on communication, management and information technology.Google Scholar
  20. 20.
    Torkildson, E., Madhow, U., & Rodwell, M. (2011). Indoor millimeter wave MIMO: Feasibility and performance. IEEE Transactions on Wireless Communications, 10(12), 4150–60.CrossRefGoogle Scholar
  21. 21.
    Sudheesh, P. G., Mozaffari, M., Magarini, M., Saad, W., & Muthuchidambaranathan, P. (2017). Sum-rate analysis for high altitude platform (HAP) drones with tethered balloon relay. IEEE Communications Letters.
  22. 22.
    Cho, Y. S., Kim, J., Yang, W. Y., & Kang, C. G. (2010). MIMO-OFDM wireless communications with MATLAB. Hoboken: Wiley.CrossRefGoogle Scholar
  23. 23.
    Simon, M. K., & Alouini, M.-S. (2005). Digital communication over fading channels (Vol. 95). Hoboken: Wiley.Google Scholar
  24. 24.
    Irish, A., Quitin, F., Madhow, U., & Rodwell, M. (2013). Sidestepping the rayleigh limit for los spatial multiplexing: A distributed architecture for long-range wireless fiber. In IEEE Information Theory and Applications Workshop (ITA) (pp. 1–6).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • P. G. Sudheesh
    • 1
    Email author
  • Maurizio Magarini
    • 2
  • P. Muthuchidambaranathan
    • 1
  1. 1.Department of Electronics and Communication EngineeringNational Institute of TechnologyTiruchirappalliIndia
  2. 2.Dipartimento di Elettronica, Informazione e BioingegneriaPolitecnico di MilanoMilanItaly

Personalised recommendations