Advertisement

Assessing efficiency in the Spanish public universities through comparative non-radial and radial data envelopment analysis

  • Justo de Jorge Moreno
  • Adriana González Robles
  • Antonio Martinez
  • Roberto Minero Calvo
  • Andrada Georgiana Miron
Original Paper
  • 2 Downloads

Abstract

In this study we have used data from Spanish public universities to assess their efficiency in a longitudinal framework between 2008/9–2014/15. To carry out the analysis, two windows data envelopment analysis and intertemporal, non-radial and radial analysis methodologies were compared. The main results show a significant deterioration in university efficiency from the 2012/13 academic year for the three proposed frontiers, with both methodologies. Some factors may explain these results, such as the ageing of teaching force and its low replacement rate of 10%, and the lack of incentives for young researchers who wish to pursue a research career, influenced by the presence of endogamy, in hiring or promotion. Finally, the resources necessary for the good governance of the Spanish public university with the consequent accountability of these, in terms of teaching, research and its transfer to society, could become a strategic issue that should be taken into account by all the actors involved.

Keywords

Public universities Non-radial data envelopment analysis Windows data envelopment analysis Public funding Public management 

Notes

Acknowledgements

The authors are grateful for the comments and suggestions made by the evaluators, who have improved this work. Any error is the sole responsibility of the authors of this research.

References

  1. Abbott, M., & Doucouliagos, C. (2003). The efficiency of Australian universities: A data envelopment analysis. Economics of Education Review, 22, 89–97.CrossRefGoogle Scholar
  2. Abramo, G., D’Angelo, C. R., & Pugini, F. (2008). The measurement of Italian universities ‘research productivity by a non-parametric-bibliometric methodology. Scientometrics, 76(2), 225–244.CrossRefGoogle Scholar
  3. Agasisti, T., & Bolli, T. (2013). The impact of the Bologna reform on the productivity of Swiss universities. Higher Education Quartely, 67(4), 374–397.CrossRefGoogle Scholar
  4. Agasisti, T., & Dal Bianco, A. (2009). Reforming the university sector: Effects on teaching efficiency-evidence from Italy. Higher Education, 57(4), 477–489.CrossRefGoogle Scholar
  5. Ahn, T. (1987). Efficiency and related issues in Higher Education: A Data Envelopment Analysis approach, Ph. D. dissertation, Collage and Graduate School of Business, University of Texas, Austin.Google Scholar
  6. Ahn, T. & Seirford, L. (1993). Sensitivity of DEA models and variable sets in a hypothesis test setting: The efficiency of university operations, en Ljiri (ed).Google Scholar
  7. Angulo, M. L., Correia, B. S. de Mello J. C., Figueiredo G. J. S., & Moren P. (2018). Evaluation of post-graduate programs using a network data envelopment analysis model. DYNA, 85, 83–90.Google Scholar
  8. Aparicio, L., Cordero, J. M., Gonzalez, M., & Lopez-Espin, J. J. (2017). Using non-radial DEA to assess school efficiency in a cross-country perspective: An empirical analysis of OECD countries. Omega, 1–12.Google Scholar
  9. Athanassopoulos, A., & Shale, E. (1997). Assessing the comparative efficiency of higher education institutions in the UK by means of data envelopment analysis. Education Economic, 5(2), 117–134.CrossRefGoogle Scholar
  10. Avkiran, N. (2001). Investigating technical and scale efficiencies of Australian universities through data envelopment analysis. Socio-Economic Planning Sciences, 35, 57–80.CrossRefGoogle Scholar
  11. Badunenko, O. & Mozharovskyi, P (2016). Nonparametric frontier analysis using stata. Stata Journal Google Scholar
  12. Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale efficiencies in data envelopment analysis. Management Science, 30(9), 1078–1092.CrossRefGoogle Scholar
  13. Barra, C., Lagravinese, R., & Zotti, R. (2018). Does econometric methodology matter to rank universities? An analysis of Italian higher education system. Socio-Economic Planning Sciences, 62, 104–120.CrossRefGoogle Scholar
  14. Bolli, T., & Farsi, M. (2015). The dynamics of productivity in Swiss universities. Journal Productivity Analysis, 44, 21–38.CrossRefGoogle Scholar
  15. Charnes, A., & Cooper, W. W. (1985). Preface to topics in data envelopment analysis. Annals of Operations Research, 2, 59–94.CrossRefGoogle Scholar
  16. Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2, 429–444.CrossRefGoogle Scholar
  17. Comisión de Expertos para la Reforma del Sistema Universitario Español 2013. Recovery https://www.mecd.gob.es/prensa-mecd/actualidad/2013/02/20130215-comision expertos.html
  18. Cooper, W. W., Seiford, L. M., & Tone, K. (2000). Data envelopment analysis. Boston: Kluwer Academic.Google Scholar
  19. Cooper, W. W., Li, S., Tone, K., Tone, K., Tharall, R. M., & Zhu, J. (2001). Sensitivity and stability analysis in DEA: Some recent developments. Journal of Productivity Analysis, 15, 217–246.CrossRefGoogle Scholar
  20. Cunha, M., & Rocha, V. (2012). On the efficiency of public higher education institutions in Portugal: An exploratory study. Research Work in Progress, 468.Google Scholar
  21. de Castro, Delibes M (2017) retrieved https://elpais.com/elpais/2017/12/13/ciencia/1513156051_250460.html Accessed 16 December 2017
  22. Debreu, G. (1951). The coefficient of resource utilization. Econometrica, 19, 273–292.CrossRefGoogle Scholar
  23. Detotto, C., Pulina, M., & Brida, J. G. (2014). Assessing the productivity of the Italian hospitality sector: A post-WDEA pooled-truncated and spatial analysis. Journal Productivity Analysis, 42(2), 102–121.CrossRefGoogle Scholar
  24. Duch-Brown, N. & Vilalta, M. (2010): “Can better governance increase university efficiency?”, Documents de Treball de I’IEB 2010/52.Google Scholar
  25. Dyson, R. G., Allen, R., Camanho, V. V., Sarrico, C. S., & Shale, E. A. (2001). Pitfall and protocols in DEA. European Journal of Operational Research, 132(2), 245–259.CrossRefGoogle Scholar
  26. Farrell, M. J. (1957). The measurement of productive efficiency. Journal of the Royal Statistical Society. Series A, 120(3), 253–290.CrossRefGoogle Scholar
  27. Flegg, A. T., Allen, D. O., Field, K., & Thurlow, T. W. (2004). Measuring the efficiency of British universities: A multi-period data envelopment analysis. Education Economics, 12(3), 231–249.CrossRefGoogle Scholar
  28. Fuentes, R., Fuster, B., & Lillo-Bañuls, A. (2016). A three-stage DEA model to evaluate learning teaching technical efficiency: Key performance indicators and contextual variables. Expert Systems with Applications, 48, 89–99.CrossRefGoogle Scholar
  29. García-Aracil, A. & Palomares-Montero, D. (2008), “Methodological problems to measure university efficiency in relation with its geographic localization”. International Association of Technology, Education and Development (IATED). INTED2008 Proceedings.Google Scholar
  30. García-Correas, A. & Larran Jorge, M. (2010) Análisis de diferentes medidas de la eficiencia docente, investigadora and de tercera misión and factores explicativos en las universidades públicas españolas. Gestión and Planificación de la Educación. Investigaciones de economía de la educación, 9, 445–469 Retrieved 24.05. 2017.Google Scholar
  31. Gómez Sancho, J.M. (2001). La evaluación de la eficiencia en las universidades públicas españolas. X Jornadas AEDE, 411–434.Google Scholar
  32. Gómez Sancho, J.M. (2005). La evaluación de la eficiencia productiva de las universidades públicas españolas. Tesis Doctoral, Zaragoza.Google Scholar
  33. Gómez Sancho, J.M. & Mancebón Torrubia, M.J. (2012). La evaluación de la eficiencia de las universidades públicas españolas: En busca de una evaluación neutral entre áreas de conocimiento”. Presupuesto y Gasto Público. Secretaría de Estado de Presupuestos and Gastos. Instituto de Estudios Fiscales.Google Scholar
  34. Gómez-Sancho, J.M.& Mancebon-Torrubia, M.J. (2008). Una propuesta de clasificación de las universidades públicas españolas en grupos comparables en los estudios de evaluación institucional. Revista Asturiana de Economia, 85–108.Google Scholar
  35. Guccio, C., Martorana, M., & Mazza, I. (2017). The efficiency changes of Italian public universities in the new millennium: A non-parametric analysis. Tertiary Education and Management, 23(3), 222–236.CrossRefGoogle Scholar
  36. Guironnet, J. P., & Peypoch, N. (2018). The geographical efficiency of education and research: The ranking of U.S. universities. Socio-Economic Planning Sciences, 62, 44–55.CrossRefGoogle Scholar
  37. Halkos, G. E., & Tzeremes, N. G. (2009). Exploring the existence of Kuznets curve in countries’ environmental efficiency using DEA windows analysis. Ecological Economics, 68(7), 2168–2176.CrossRefGoogle Scholar
  38. Hanke, M., & Leopoldser, T. (1998). Comparing the efficiency of international journal of Australian universities. Tertiary Education and Management, 4(3), 191–197.Google Scholar
  39. Hsiu-Ching, et al. (2014). A new perspective to explore the technology transfer efficiencies in US universities. The Journal of Technology Transfer, 39(2), 247–275.CrossRefGoogle Scholar
  40. Johnes, J. (2008). Efficiency and productivity change in the English higher education sector from 1996/97 to 2004/05. The Manchester School, 76(6), 653–674.CrossRefGoogle Scholar
  41. Johnes, J. (2018). University rankings. What do they really show? Scientometrics, 115, 585–606.CrossRefGoogle Scholar
  42. Katharaki, M., & Katharakis, G. (2010). A comparative assessment of Greek universities ‘efficiency using quantitative analysis. International Journal of Education Research, 49, 1115–1128.CrossRefGoogle Scholar
  43. Klumpp, M. (2018). The index number problem with DEA: Insights from European University efficiency data. Education Sciences, 8(79), 1–27.Google Scholar
  44. Marinho, A., Resende, M., & FaCanha, L. (1997). Brazilian Federal Universities: Relative efficiency evaluation and data envelopment analysis. Revista Brasileira de Economía, 51(4), 489–508.Google Scholar
  45. Marti, M. L., Puertas, R., & Calafat, C. (2014). Calidad y eficiencia de las Universidades Públicas Españolas. Revista de Estudios Regionales, 99, 135–154.Google Scholar
  46. Ministerio de Educación, Culturay Deporte. (2018) [Fichero de datos]. Recuperado de http://www.mecd.gob.es/portada-mecd/
  47. Moro-Martin, A; Martin, P; Nieto, A; Matute, C; Muñoz-Tuñon, C; Guigó, R; Simón, MA. & Llorca, O;(2018) retrieved https://elpais.com/elpais/2018/07/16/eps/1531763162_319492.html. Accessed 25 July 2018
  48. Observatorio Sistema Universitario (2017). ¿Quién financia la Universidad? Rectrieved 25.05.2018. http://www.observatoriuniversitari.org/es/
  49. Rodríguez-Cornejo, V. (2013). Cambio en los modelos de financiación interna y eficiencia en la universidad. Tesis doctoral. Universidad de Cádiz.Google Scholar
  50. Ruiz, J. L., José, V., Segura, J. V., & Sirvent, I. (2015). Benchmarking and target setting with expert preferences: An application to the evaluation of educational performance of Spanish universities. European Journal of Operational Research, 242, 595–605.Google Scholar
  51. Sagarra, M., Mar-Molinero, C., & Agasisti, T. (2017). Exploring the efficiency of Mexican universities: Integrating data envelopment analysis and multidimensional scaling. Omega, 67, 123–133.CrossRefGoogle Scholar
  52. Sun, D. B. (1988). Evaluation of managerial performance in large commercial banks by data envelopment analysis, Ph.D. Thesis, Graduate School of Business, Austin: The University of Texas.Google Scholar
  53. Vallet Regi M (2018) retrieved https://elpais.com/elpais/2018/08/24/ciencia/1535110934_810395.html. Accessed 27 August 2018
  54. Visbal-Cadavid, D., Martinez-Gómez, M., & Guijarro, F. (2017). Assessing the efficiency of public universities through DEA. A case study. Sustainability. 9(8), 1416, 2–19Google Scholar
  55. Wolszczak-Derlacz, J. (2017). An evaluation and explanation of (in)efficiency in higher education institutions in Europe and the U.S. with the application of two-stage semiparametric DEA. Research Policy, 46, 1595–1605.CrossRefGoogle Scholar
  56. Yang, G. L., Fukuyama, H., & Song, Y. Y. (2018). Measuring the inefficiency of Chinese research universities based on a two-stage network DEA model. Journal of Infometrics, 12, 10–30.CrossRefGoogle Scholar

Copyright information

© EAIR - The European Higher Education Society 2018

Authors and Affiliations

  • Justo de Jorge Moreno
    • 1
  • Adriana González Robles
    • 1
  • Antonio Martinez
    • 1
  • Roberto Minero Calvo
    • 1
  • Andrada Georgiana Miron
    • 1
  1. 1.University of AlcaláAlcalá de HenaresSpain

Personalised recommendations