# Two traditions in abstract valuational model theory

- 27 Downloads

## Abstract

We investigate two different broad traditions in the abstract valuational model theory for nontransitive and nonreflexive logics. The first of these traditions makes heavy use of the natural Galois connection between sets of (many-valued) valuations and sets of arguments. The other, originating with work by Grzegorz Malinowski on nonreflexive logics, and best systematized in Blasio et al. (Bull Sect Log 46(3/4): 233–262, 2017), lets sets of arguments determine a more restricted set of valuations. After giving a systematic discussion of these two different traditions in the valuational model theory for substructural logics, we turn to looking at the ways in which we might try to compare two sets of valuations determining the same set of arguments.

## Keywords

Valuational model theory p-consequence q-consequence Many-valued logic## Notes

### Acknowledgements

We would like to thank the audience at the 2018 Australasian Association for Logic meeting, and two anonymous referees for their helpful discussion and comments on this material. David Ripley’s contribution was partially supported by the project “Logic and Substructurality”, grant number FFI2017-84805-P, Ministerio de Economía, Industria y Competitividad, Government of Spain.

## References

- Bimbó, K., & Dunn, J. M. (2008).
*Generalized Galois logics: Relational semantics of nonclassical logical calculi. Number 188 in CSLI lecture notes*. Stanford: CSLI Publications.Google Scholar - Birkhoff, G. (1967).
*Lattice theory*(3rd ed.). New York: American Mathematical Society.Google Scholar - Blasio, C., Marcos, J., & Wansing, H. (2017). An inferentially many-valued two-dimensional notion of entailment.
*Bulletin of the Section of Logic*,*46*(3/4), 233–262.Google Scholar - Carnap, R. (1943).
*Formalization of logic*. Cambridge, Massachusetts: Harvard University Press.Google Scholar - Davey, B. A., & Priestley, H. A. (2002).
*Introduction to lattices and order*. Cambridge: Cambridge University Press.CrossRefGoogle Scholar - Dunn, J. M. (1991). Gaggle theory: An abstraction of Galois connections and residuation with applications to negations and various logical operators. In
*Logics in AI, Proceedings of European workshop JELIA 1990*(pp. 31–51). Berlin: LNCS.Google Scholar - Dunn, J. M., & Hardegree, G. M. (2001).
*Algebraic methods in philosophical logic*. Oxford: Oxford University Press.Google Scholar - Erné, M., Koslowski, J., Melton, A., & Strecker, G. (1993). A primer on Galois connections.
*Annals of the New York Academy of Sciences*,*704*(1), 103–125.CrossRefGoogle Scholar - Frankowski, S. (2004). Formalization of a plausible inference.
*Bulletin of the Section of Logic*,*33*, 41–52.Google Scholar - Frankowski, S. (2008). Plausible reasoning expressed by p-consequence.
*Bulletin of the Section of Logic*,*37*(3–4), 161–170.Google Scholar - French, R., & Ripley, D. (2019). Valuations: Bi, tri, and tetra.
*Studia Logica*,*107*(6), 1313–1346. CrossRefGoogle Scholar - Hardegree, G. M. (2005). Completeness and super-valuations.
*Journal of Philosophical Logic*,*34*(1), 81–95.CrossRefGoogle Scholar - Humberstone, L. (2012).
*The connectives*. Cambridge, Massachusetts: MIT Press.Google Scholar - Malinowski, G. (1990). Q-consequence operation.
*Reports on Mathematical Logic*,*24*, 49–59.Google Scholar - Ore, O. (1944). Galois connexions.
*Transactions of the American Mathematical Society*,*55*, 493–513.CrossRefGoogle Scholar - Ripley, D. (2018). Blurring: An approach to conflation.
*Notre Dame Journal of Formal Logic*,*59*(2), 171–188.CrossRefGoogle Scholar - Scott, D. (1974). Completeness and axiomatizability in many-valued logic. In L. Henkin (Ed.),
*Proceedings of the Tarski symposium*(pp. 411–436). Providence: American Mathematical Society.CrossRefGoogle Scholar - Shoesmith, D. J., & Smiley, T. J. (1978).
*Multiple-conclusion logic*. Cambridge: Cambridge University Press.CrossRefGoogle Scholar