pp 1–24 | Cite as

What is a logical theory? On theories containing assertions and denials

  • Carolina Blasio
  • Carlos Caleiro
  • João MarcosEmail author
S.I.: Varieties of Entailment


The standard notion of formal theory, in logic, is in general biased exclusively towards assertion: it commonly refers only to collections of assertions that any agent who accepts the generating axioms of the theory should also be committed to accept. In reviewing the main abstract approaches to the study of logical consequence, we point out why this notion of theory is unsatisfactory at multiple levels, and introduce a novel notion of theory that attacks the shortcomings of the received notion by allowing one to take both assertions and denials on a par. This novel notion of theory is based on a bilateralist approach to consequence operators, which we hereby introduce, and whose main properties we investigate in the present paper.


Logical consequence Bilateralism The notion of theory Assertions and denials 



  1. Badia, G., & Marcos, J. (2018). On classes of structures axiomatizable by universal d-Horn sentences and universal positive disjunctions. Algebra Universalis, 79(2), 41.CrossRefGoogle Scholar
  2. Blasio, C., Marcos, J., & Wansing, H. (2017). An inferentially many-valued two-dimensional notion of entailment. Bulletin of the Section of Logic, 46, 233–262.CrossRefGoogle Scholar
  3. Carnap, R. (1943). Formalization of logic. Cambridge: Harvard.Google Scholar
  4. Chang, C. C., & Keisler, H. J. (1973). Model theory. Studies in logic and the foundations of mathematics (Vol. 73). New York: North-Holland.Google Scholar
  5. Curry, H. (1963). Foundations of mathematical logic. New York: McGraw-Hill.Google Scholar
  6. Czelakowski, J. (1983). Some theorems on structural entailment relations. Studia Logica, 42(4), 417–429.CrossRefGoogle Scholar
  7. Dunn, J. M., & Hardegree, G. M. (2001). Algebraic methods in philosophical logic. Oxford: Clarendon Press.Google Scholar
  8. Gabbay, D. M. (1981). Semantic investigations in Heyting’s intuitionistic logic. Synthese library (Vol. 148). Berlin: Springer.CrossRefGoogle Scholar
  9. Hilbert, D. (1900). Über den Zahlbegriff. Jahresbericht der Deutschen Mathematiker-Vereiningung, 8, 180–184.Google Scholar
  10. Humberstone, L. (2011). The connectives. Cambridge: MIT Press.CrossRefGoogle Scholar
  11. Humberstone, L. (2012). Dana Scott’s work with generalized consequence relations. In J.-Y. Béziau (Ed.), Universal logic: An anthology (pp. 263–279). Basel: Birkhäuser.CrossRefGoogle Scholar
  12. Łos, J., & Suszko, R. (1958). Remarks on sentential logics. Indagationes Mathematicae, 20, 177–183.Google Scholar
  13. Marcelino, S., & Caleiro, C. Axiomatizing non-deterministic many-valued generalized consequence relations. Synthese.
  14. Marcos, J. (2007). Ineffable inconsistencies. In J.-Y. Béziau, et al. (Eds.), Handbook of paraconsistency. Studies in logic (Vol. 9, pp. 301–311). London: College Publications.Google Scholar
  15. Martin, N. M., & Pollard, S. (1996). Closure spaces and logic. Dordrecht: Kluwer.CrossRefGoogle Scholar
  16. Morgan, C. G. (1973). Sentential calculus for logical falsehoods. Notre Dame Journal of Formal Logic, XIV(3), 347–353.CrossRefGoogle Scholar
  17. Segerberg, K. (1982). Classical propositional operators: An exercise in the foundations of logic. Oxford: Oxford University Press.Google Scholar
  18. Scott, D. (1974). Completeness and axiomatizability in many-valued logic. In Proceedings of the Tarski symposium (Vol. 25, pp. 411–436). Providence: American Mathematical Society.Google Scholar
  19. Shoesmith, D. J., & Smiley, T. J. (1978). Multiple-conclusion logic. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  20. Tarski, A. (1930). Über einige fundamentale Begriffe der Metamathematik. Comptes Rendus des séances de la Société des Sciences et des Lettres de Varsovie, 23, 22–29.Google Scholar
  21. Tarski, A. (1936). Über den Begriff der logischen Folgerung. In Actes du Congrès International de Philosophie Scientifique (Vol. 7, pp. 1–11). Paris.Google Scholar
  22. Tarski, A. (1952). Some notions and methods on the borderline of algebra and metamathematics. In Proceedings of the international congress of mathematicians (Vol. I, pp. 705–719). American Mathematical Society.Google Scholar
  23. Wójcicki, R. (1998). Theory of logical calculi. Synthese library (Vol. 199). Dordrecht: Kluwer.Google Scholar
  24. Zygmunt, J. (1984). An essay in matrix semantics for consequence relations. Acta Universitatis Wratislaviensis (Vol. 741). Wrocław: U. Wrocław.Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.CampinasBrazil
  2. 2.SQIG–Instituto de TelecomunicaçõesLisbonPortugal
  3. 3.Dep. Matemática–Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal
  4. 4.LoLITA–DIMApUFRNNatalBrazil

Personalised recommendations