pp 1–24 | Cite as

Hyperintensional logics for everyone

  • Igor SedlárEmail author


We introduce a general representation of unary hyperintensional modalities and study various hyperintensional modal logics based on the representation. It is shown that the major approaches to hyperintensionality known from the literature, that is state-based, syntactic and structuralist approaches, all correspond to special cases of the general framework. Completeness results pertaining to our hyperintensional modal logics are established.


Awareness logic Hyperintensionality Hyperintensional logic Hyperintensional modalities Impossible worlds Modal logic Non-Fregean logic Structured propositions 



This work was supported by the long-term strategic development financing of the Institute of Computer Science (RVO:67985807). The author is grateful to Pavel Cmorej, Marie Duží, Daniela Glavaničová, Miloš Kosterec, Pavel Materna, Jaroslav Peregrin, Ivo Pezlar and Jiří Raclavský for comments on drafts of this article.


  1. Artemov, S. (2008). The logic of justification. The Review of Symbolic Logic, 1, 477–513.CrossRefGoogle Scholar
  2. Barwise, J., & Perry, J. (1983). Situations and attitudes. Cambridge, MA: MIT Press.Google Scholar
  3. Berto, F. (2007). How to sell a contradiction. The logic and metaphysics of inconsistency. London: College Publications.Google Scholar
  4. Berto, F. (2013). Impossible worlds. In E. N. Zalta (Ed.), The stanford encyclopedia of philosophy, winter 2013 edition.Google Scholar
  5. Berto, F. (2018a). Aboutness in imagination. Philosophical Studies, 175, 1871–1886.CrossRefGoogle Scholar
  6. Berto, F. (2018b). Simple hyperintensional belief revision. Erkenntnis,
  7. Berto, F. (2019). The theory of topic-sensitive intentional modals. In I. Sedlár & M. Blicha (Eds.), The logica yearbook 2018. London: College Publications.Google Scholar
  8. Berto, F. & Hawke, P. (2018). Knowability relative to information. Mind
  9. Bloom, S. L., & Suszko, R. (1971). Semantics for the sentential calculus with identity. Studia Logica, 28, 77–81.CrossRefGoogle Scholar
  10. Bloom, S. L., & Suszko, R. (1972). Investigations into the sentential calculus with identity. Notre Dame Journal of Formal Logic, 13, 289–308.CrossRefGoogle Scholar
  11. Chellas, B. (1980). Modal logic. An introduction. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  12. Cresswell, M. J. (1970). Classical intensional logics. Theoria, 36, 347–372.CrossRefGoogle Scholar
  13. Cresswell, M. J. (1972). Intensional logics and logical truth. Journal of Philosophical Logic, 1, 2–15.CrossRefGoogle Scholar
  14. Cresswell, M. J. (1975). Hyperintensional logic. Studia Logica, 34, 25–38.CrossRefGoogle Scholar
  15. Cresswell, M. J. (1985). Structured meanings. Cambridge, MA: MIT Press.Google Scholar
  16. Duží, M., & Jespersen, B. (2015). Transparent quantification into hyperintensional objectual attitudes. Synthese, 192, 635–677.CrossRefGoogle Scholar
  17. Duží, M., Jespersen, B., & Materna, P. (2010). Procedural semantics for hyperintensional logic. Dordrecht: Springer.Google Scholar
  18. Duží, M. (2017). If structured propositions are logical procedures then how are procedures individuated? Synthese,
  19. Eberle, R. (1974). A logic of believing, knowing, and inferring. Synthese, 26, 356–382.CrossRefGoogle Scholar
  20. Fagin, R., & Halpern, J. (1988). Belief, awareness, and limited reasoning. Artificial Intelligence, 34, 39–76.CrossRefGoogle Scholar
  21. Fagin, R., Halpern, J., Moses, Y., & Vardi, M. Y. (1995). Reasoning about knowledge. Cambridge, MA: MIT Press.Google Scholar
  22. Fine, K. (2014). Truth-maker semantics for intuitionistic logic. Journal of Philosophical Logic, 43, 549–577.CrossRefGoogle Scholar
  23. Fine, K. (2016). Angellic content. Journal of Philosophical Logic, 45, 199–226.CrossRefGoogle Scholar
  24. Fine, K. (2017). Truthmaker semantics. In B. Hale, C. Wright, & A. Miller (Eds.), A companion to the philosophy of language (pp. 556–577). Hoboken: Wiley-Blackwell.CrossRefGoogle Scholar
  25. Fitting, M. (2005). The logic of proofs, semantically. Annals of Pure and Applied Logic, 132, 1–25.CrossRefGoogle Scholar
  26. Hintikka, J. (1975). Impossible possible worlds vindicated. Journal of Philosophical Logic, 4, 475–484.CrossRefGoogle Scholar
  27. van der Hoek, W., & Meyer, J.-J. C. (1989). Possible logics for belief. Logique et Analyse, 32, 177–194.Google Scholar
  28. Jago, M. (2014). The impossible. An essay on hyperintensionality. Oxford: Oxford University Press.CrossRefGoogle Scholar
  29. Janssen, T. (1997). Compositionality. In J. van Benthem & A. ter Meulen (Eds.), Handbook of logic and language (pp. 417–473). Amsterdam: Elsevier.CrossRefGoogle Scholar
  30. Jespersen, B. (2017). Anatomy of a proposition. Synthese,
  31. Jespersen, B., & Duží, M. (2015). Special section on hyperintensionality. Synthese, 192, 525–677.CrossRefGoogle Scholar
  32. King, J. C. (1995). Structured propositions and complex predicates. Noûs, 29, 516–535.CrossRefGoogle Scholar
  33. King, J. C. (1996). Structured propositions and sentence structure. Journal of Philosophical Logic, 25, 495–521.CrossRefGoogle Scholar
  34. King, J. C. (2007). The nature and structure of content. Oxford: Oxford University Press.CrossRefGoogle Scholar
  35. Konolige, K. (1984). A deduction model of belief and its logics. Ph.D. Thesis, Stanford University.Google Scholar
  36. Leitgeb, H. (2018). HYPE: A system of hyperintensional logic (with an application to semantic paradoxes). Journal of Philosophical Logic,
  37. Levesque, H. (1984). A logic of implicit and explicit belief. In Proceedings of AAAI 1984 (pp. 198–202).Google Scholar
  38. Lewis, D. K. (1970). General semantics. Synthese, 22, 18–67.CrossRefGoogle Scholar
  39. Montague, R. (1968). Pragmatics. In R. Klibansky (Ed.) Contemporary philosophy: A survey. (pp. 102–122). Florence: La Nuova Italia Editrice (reprinted In R. H. Thomason (Ed.), Formal philosophy: Selected papers of Richard Montague. (pp. 95–118). New Heaven: Yale University Press, 1974.)Google Scholar
  40. Moore, R. C., & Hendrix, G. G. (1982). Computational models of belief and the semantics of belief sentences. In S. Peters & E. Saarinen (Eds.), Processes, beliefs, and questions: Essays on formal semantics of natural language and natural language processing (pp. 107–127). Dordrecht: Springer.CrossRefGoogle Scholar
  41. Pacuit, E. (2017). Neighborhood semantics for modal logic. Dordrecht: Springer.CrossRefGoogle Scholar
  42. Rantala, V. (1982a). Impossible worlds semantics and logical omniscience. Acta Philosophica Fennica, 35, 106–115.Google Scholar
  43. Rantala, V. (1982b). Quantified modal logic: Non-normal worlds and propositional attitudes. Studia Logica, 41, 41–65.CrossRefGoogle Scholar
  44. Rescher, N., & Brandom, R. (1980). The logic of inconsistency: A study in non-standard possible worlds semantics and ontology. Oxford: Basil Blackwell.Google Scholar
  45. Ripley, D. (2012). Structures and circumstances: Two ways to fine-grain propositions. Synthese, 189, 97–118.CrossRefGoogle Scholar
  46. Salmon, W. (1986). Frege’s Puzzle. Cambridge, MA: MIT Press.Google Scholar
  47. Scott, D. (1970). Advice on modal logic. In K. Lambert K (Ed.), Philosophical problems in logic (pp. 143–173). Dordrecht: Dordrecht Reidel Publishing Company.Google Scholar
  48. Segerberg, K. (1971). An essay in classical modal logic. Uppsala: Filosofiska Föreningen Och Filosofiska Institutionen Vid Uppsala Universitet.Google Scholar
  49. Sillari, G. (2008). Quantified logic of awareness and impossible possible worlds. Review of Symbolic Logic, 1, 514–529.CrossRefGoogle Scholar
  50. Soames, S. (1987). Direct reference, propositional attitudes, and semantic content. Philosophical Topics, 15, 47–87.CrossRefGoogle Scholar
  51. Tichý, P. (1988). The foundations of Frege’s logic. Berlin: Walter de Gruyter.CrossRefGoogle Scholar
  52. Wansing, H. (1989). Bemerkungen zur Semantik nicht-normaler möglicher Welten. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 35, 551–557.CrossRefGoogle Scholar
  53. Wansing, H. (1990). A general possible worlds framework for reasoning about knowledge and belief. Studia Logica, 49, 523–539.CrossRefGoogle Scholar
  54. Zalta, E. N. (1988). Intensional logic and the metaphysics of intentionality. Cambridge, MA: MIT Press.Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institute of Computer ScienceThe Czech Academy of SciencesPrague 8Czech Republic

Personalised recommendations