## Abstract

A number of philosophers have attempted to solve the problem of null-probability possible events in Bayesian epistemology by proposing that there are infinitesimal probabilities. Hájek (Synthese 137:273–323, 2003) (more tentatively) and Easwaran (Philos Rev 123:1–41, 2014) (more definitively) have argued that because there is no way to specify a particular hyperreal extension of the real numbers, solutions to the regularity problem involving infinitesimals, or at least hyperreal infinitesimals, involve an unsatisfactory ineffability or arbitrariness. The arguments depend on the alleged impossibility of picking out a particular hyperreal extension of the real numbers and/or of a particular value within such an extension due to the use of the Axiom of Choice. However, it is false that the Axiom of Choice precludes a specification of a hyperreal extension—such an extension can indeed be specified. Moreover, for all we know, it is possible to explicitly specify particular infinitesimals within such an extension. Nonetheless, I prove that because any regular probability measure that has infinitesimal values can be replaced by one that has all the same intuitive features but other infinitesimal values, the heart of the arbitrariness objection remains.

## Keywords

Infinitesimals Hyperreals Bayesianism Probability Regularity Set theory Axiom of Choice Saturated models Underdetermination## Notes

## References

- Benacerraf, P. (1962). Tasks, super-tasks, and the modern eleatics.
*Journal of Philosophy*,*59*, 765–784.CrossRefGoogle Scholar - Benacerraf, P. (1965). What numbers could not be.
*Philosophical Review*,*74*, 47–73.CrossRefGoogle Scholar - Benci, V., Horsten, L., & Wenmackers, S. (2013). Non-archimedean probability.
*Milan Journal of Mathematics*,*81*, 121–151.CrossRefGoogle Scholar - Benci, V., Horsten, L., & Wenmackers, S. (2018). Infinitesimal probabilities.
*British Journal for the Philosophy of Science*,*69*, 509–552.Google Scholar - Brickhill, H., & Horsten, L. (2016). Popper functions, lexicographical probability, and non-Archimedean probability. arXiv:1608.02850.
- DiBella, N. (2018). The qualitative paradox of non-conglomerability.
*Synthese*,*195*, 1181–1210.CrossRefGoogle Scholar - Easwaran, K. (2014). Regularity and hyperreal credences.
*Philosophical Review*,*123*, 1–41.CrossRefGoogle Scholar - Ehrlich, P. (2012). The absolute arithmetic continuum and the unification of all numbers great and small.
*Bulletin of Symbolic Logic*,*18*, 1–45.CrossRefGoogle Scholar - Fitelson, B., & Hájek, A. (2017). Declarations of independence.
*Synthese*,*194*, 3979–3995.CrossRefGoogle Scholar - Hájek, A. (2003). What conditional probability could not be.
*Synthese*,*137*, 273–323.CrossRefGoogle Scholar - Jech, T. (1997).
*Set Theory*(2nd ed.). Berlin: Springer.CrossRefGoogle Scholar - Kanovei, V., & Shelah, S. (2004). A definable nonstandard model of the reals.
*Journal of Symbolic Logic*,*69*, 159–164.CrossRefGoogle Scholar - Keisler, H. J. (1994). The hyperreal line. In P. Erlich (Ed.),
*Real numbers, generalizations of reals, and theories of continua*(pp. 207–237). Dordrecht: Kluwer.CrossRefGoogle Scholar - Keisler, H. J. (2007).
*Foundations of infinitesimal calculus*, Online Edition. 2007. https://www.math.wisc.edu/~keisler/foundations.html. Accessed 17 Dec 2018. - Krauss, P. H. (1968). Representation of conditional probability measures on Boolean algebras.
*Acta Mathematica Academiae Scientiarum Hungarica*,*19*, 229–241.CrossRefGoogle Scholar - Laugwitz, D. (1968). Eine nichtarchimedische Erweiterung angeordneter Körper.
*Mathematische Nachrichten*,*37*, 225–236.CrossRefGoogle Scholar - McGee, V. (1994). Learning the impossible. In E. Eells & B. Skyrms (Eds.),
*Probability and conditionals: Belief revision and rational decision*. Cambridge: Cambridge University Press.Google Scholar - Norton, J. D. (2018). How to build an infinite lottery machine.
*European Journal for the Philosophy of Science*,*8*, 71–95.CrossRefGoogle Scholar - Norton, J. D., & Pruss, A. R. (2018). Correction to John D. Norton ‘How to build an infinite lottery machine’.
*European Journal for the Philosophy of Science*,*8*, 143–144.CrossRefGoogle Scholar - Pedersen, A., & Paul, M. S. (2013) Strictly coherent preferences, no holds barred.Google Scholar
- Pincus, D., & Solovay, R. M. (1977). Definability of measures and ultrafilters.
*Journal of Symbolic Logic*,*42*, 179–190.CrossRefGoogle Scholar - Pruss, A. R. (2013a). Probability, regularity, and cardinality.
*Philosophy of Science*,*80*, 231–240.CrossRefGoogle Scholar - Pruss, A. R. (2013b). Null probability, dominance and rotation.
*Analysis*,*73*, 682–685.CrossRefGoogle Scholar - Pruss, A. R. (2014). Infinitesimals are too small for countably infinite fair lotteries.
*Synthese*,*191*, 1051–1057.CrossRefGoogle Scholar - Pruss, A. R. (2015). Popper functions, uniform distributions and infinite sequences of heads.
*Journal of Philosophical Logic*,*44*, 259–271.CrossRefGoogle Scholar - Pruss, A. R. (2018).
*Infinity, causation and paradox*. Oxford: Oxford University Press.CrossRefGoogle Scholar - Robert, A. M. (2000).
*A course in p-adic analysis*. New York: Springer.CrossRefGoogle Scholar - Sacks, G. E. (2010).
*Saturated model theory*(2nd ed.). Singapore: World Scientific Publishing.Google Scholar - Shamseddine, K., & Berz, M. (2010). Analysis on the Levi–Civita field, a brief overview.
*Contemporary Mathematics*,*508*, 215–237.CrossRefGoogle Scholar - Weintraub, R. (2008). How probable is an infinite sequence of heads? A reply to Williamson.
*Analysis*,*68*, 247–250.CrossRefGoogle Scholar - Williamson, T. (2007). How probable is an infinite sequence of heads?
*Analysis*,*67*, 173–80.CrossRefGoogle Scholar