Advertisement

Some Results on Strongly Pseudomonotone Quasi-Variational Inequalities

  • Luong V. Nguyen
  • Xiaolong QinEmail author
Article
  • 9 Downloads

Abstract

In this paper, strongly pseudomonotone quasi-variational inequalities are investigated. We provide sufficient conditions for existence and uniqueness of solutions of strongly pseudomonotone quasi-variational inequalities. We present some error bounds in terms of residual and regularized gap functions. The global exponential stability of equilibrium solutions of a projected dynamical system for strongly pseudomonotone quasi-variational inequalities is investigated. Strong convergence and error estimates for sequence generated by the (modified) gradient projection method with suitable choices of stepsizes are also studied. Some examples and numerical experiments are provided to support our main results.

Keywords

Quasi-variational inequalities Strong pseudomonotonicity Projection method Error bounds Dynamical systems 

Mathematics Subject Classification (2010)

49J40 47J20 49M30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This article was supported by the National Natural Science Foundation of China under Grant No.11401152. The first author was also supported by the Research Fund for International Young Scientists under Grant No. 1181101157 and the China Postdoctoral Science Foundation under Grant No. 2017M6200421.

References

  1. 1.
    Ansari, Q.H., Balooee, J., Yao, J-C.: Extended general nonlinear quasi-variational inequalities and projection dynamical systems. Taiwaness J. Math. 17, 1321–1352 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Atipin, A.S., Jaćimović, M., Mijajlović, N.: Extragradient method for solving quasivariational inequalities. Optimization 67, 103–112 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bensoussan, A., Goursat, M., Lions, J.L.: Contrôle impulsionnel et inéquations quasi-variationnelles. C. R. Acad. Sci. Paris Sér A 276, 1284–1973 (1973)zbMATHGoogle Scholar
  4. 4.
    Bensoussan, A., Lions, J.L.: Nouvelle formulation de problèmes de contrôle impulsionnel et applications. C. R. Acad. Sci. Paris Sér. A 276, 1189–1192 (1973)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Bensoussan, A., Lions, J.L.: Nouvelles méthodes en contrôle impulsionnel. Appl. Math. Optim. 1, 289–312 (1975)CrossRefzbMATHGoogle Scholar
  6. 6.
    Bliemer, M., Bovy, P.: Quasi-variational inequality formulation of the multiclass dynamic traffic assignment problem. Transp. Res. B: Methodol. 37, 501–519 (2003)CrossRefGoogle Scholar
  7. 7.
    Baiocchi, C., Capelo, A.: Variational and Quasivariational Inequalities: Applications to Free Boundary Problems. Wiley, New York (1984)zbMATHGoogle Scholar
  8. 8.
    Cho, S.Y.: Generalized mixed equilibrium and fixed point problems in a Banach space. J. Nonlinear Sci. Appl. 9, 1083–1092 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Chan, D., Pang, J.S.: The generalized quasi-variational inequality problem. Math. Oper. Res. 7, 211–222 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ceng, L.C.: Approximation of common solutions of a split inclusion problem and a fixed-point problem. J. Appl. Numer. Optim. 1, 1–12 (2019)Google Scholar
  11. 11.
    Gupta, R., Mehra, A.: Gap functions and error bounds for quasi variational inequalities. J. Glob. Optim. 53, 737–748 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Ha, N.T.T., Strodiot, J.J., Vuong, P.T.: On the global exponential stability of a projected dynamical system for strongly pseudomonotone variational inequalities. Optim. Lett. 12, 1625–1638 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Harker, P.T.: Generalized Nash games and quasi-variational inequalities. Eur. J. Oper. Res. 54, 81–94 (1991)CrossRefzbMATHGoogle Scholar
  14. 14.
    Haslinger, J., Panagiotopoulos, P.D.: The reciprocal variational approach to the Signorini problem with friction. Approximation results. Proc. Royal Soc. Edinburgh: Sect. A Math. 98, 365–383 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Hammerstein, P., Selten, R.: Game theory and evolutionary biology. In: Aumann, R.J., Hart, S (eds.) Handbook of game theory with economic applications, Vol. 2, pp. 929–993, North-Holland (1994)Google Scholar
  16. 16.
    Hieu, D.V., Thong, D.V.: New extragradient-like algorithms for strongly pseudomonotone variational inequalities. J. Global Optim. 70, 385–399 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Hieu, D.V., Thong, D.V.: Inertial extragradient algorithms for strongly pseudomonotone variational inequalities. J. Comput. Appl. Math. 341, 80–98 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Huang, B., Zhang, H., Gong, D., Wang, Z.: A new result for projection neural networks to solve linear variational inequalities and related optimization problems. Neural Comput. Appl. 23, 357–362 (2013)CrossRefGoogle Scholar
  19. 19.
    Lahmdani, A., Chadli, O., Yao, J.C.: Existence of solutions for noncoercive hemivariational inequalities by an equilibrium approach under pseudomonotone perturbation. J. Optim. Theory Appl. 160(2014), 49–66 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Kravchuk, A.S., Neittaanmaki, P.J.: Variational and quasi-variational inequalities in mechanics. Springer, Dordrecht (2007)CrossRefzbMATHGoogle Scholar
  21. 21.
    Khan, A.G., Noor, M.A., Noor, K.I.: Dynamical systems for quasi variational inequalities. Ann. Funct. Anal. 6, 193–209 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Khanh, P.D., Vuong, P.T.: Modified projection method for strongly pseudomonotone variational inequalities. J. Global Optim. 58, 341–350 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Khanh, P.D.: A New extragradient method for strongly pseudomonotone variational inequalities. Numer. Funct. Anal. Optim. 37, 1131–1143 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Kim, D.S., Vuong, P.T., Khanh, P.D.: Qualitative properties of strongly pseudomonotone variational inequalities. Optim. Lett. 10, 1669–1679 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and their Applications. Academic, New York (1980)zbMATHGoogle Scholar
  26. 26.
    Kharroubi, I., Ma, J., Pham, H., Zhang, J.: Backward SDEs with constrained jumps and quasi-variational inequalities. Ann. Probab. 38, 794–840 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Mosco, U.: Implicit variational problems and quasi variational inequalities. In: Gossez, J., Lami Dozo, E., Mawhin, J., Waelbroeck, L (eds.) Nonlinear operators and the calculus of variations, lecture notes in mathematics Vol. 543, pp. 83–156. Springer, Berlin (1976)Google Scholar
  28. 28.
    Mijajlović, N., Jaćimović, M.: Proximal methods for solving quasi-variational inequalities. Comput. Math. Math. Phys. 55, 1981–1985 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Nesterov, Y., Scrimali, L.: Solving strongly monotone variational and quasi-variational inequalities. Discrete Contin. Dynam. Systems 31, 1383–11396 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Noor, M.A., Oettli, W.: On general nonlinear complementarity problems and quasiequilibria. Le Matematiche XLIX, 313–331 (1994)zbMATHGoogle Scholar
  31. 31.
    Outrata, J., Kocvara, M.: On a class of quasi-variational inequalities. Optim. Methods Softw. 5, 275–295 (1995)CrossRefzbMATHGoogle Scholar
  32. 32.
    Pang, J.-S., Fukushima, M.: Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games. Comput. Math. Sci. 2, 21–56 (2005)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Pappalardo, M., Passacantando, M.: Stability for equilibrium problems: From variational inequalities to dynamical systems. J. Optim. Theory Appl. 113, 567–582 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Shi, L.Y., Ansari, Q.H., Wen, C.F., Yao, J.C.: Incremental gradient projection algorithm for constrained composite minimization problems. J. Nonlinear Var. Anal. 1, 253–264 (2017)zbMATHGoogle Scholar
  35. 35.
    Wei, J.Y., Smeers, Y.: Spatial oligopolistic electricity models with Cournot generators and regulated transmission prices. Oper. Res. 47, 102–112 (1999)CrossRefzbMATHGoogle Scholar
  36. 36.
    Xia, Y., Wang, J.: A general projection neural network for solving monotone variational inequalities and related optimization problems. IEEE Trans. Neural Netw. 15, 318–328 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengduChina
  2. 2.Department of Natural SciencesHong Duc UniversityThanh HoaVietnam

Personalised recommendations