Advertisement

Bornological Coderivative and Subdifferential Calculus in Smooth Banach Spaces

  • Nguyen Mau NamEmail author
  • Hung M. Phan
  • Bingwu Wang
Article
  • 15 Downloads

Abstract

In this paper, we study bornological generalized differential properties of sets with nonsmooth boundaries, nonsmooth functions, and set-valued mappings in smooth Banach spaces. We establish a fuzzy intersection rule for bornological normal cones and develop fuzzy calculus for bornological generalized differential constructions as well as exact calculus for the limiting counterparts of these constructions.

Keywords

Bornology Generalized differentiation Bornological subdifferential Bornological normal cone Bornological coderivative 

Mathematics Subject Classifications (2010)

Primary 49J52, 49J53 Secondary 90C30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We are grateful to anonymous referees for their valuable suggestions and remarks that allowed us to improve the original presentation.

References

  1. 1.
    Borwein, J.M., Ioffe, A.D.: Proximal analysis in smooth spaces. Set-Valued Anal. 4, 1–24 (1996)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Borwein, J.M., Mordukhovich, B.S., Shao, Y.: On the equivalence of some basic principles in variational analysis. J. Math. Anal. Appl. 229, 228–257 (1999)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Borwein, J.M., Preiss, D.: A smooth variational principle with applications to the subdifferentiability of convex functions. Trans. Amer. Math. Soc. 303, 517–527 (1987)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Borwein, J.M., Zhu, Q.J.: Techniques of Variational Analysis. Springer, New York (2005)zbMATHGoogle Scholar
  5. 5.
    Borwein, J.M., Zhu, Q.J.: Viscosity solutions and viscosity subderivatives in smooth Banach spaces with applications to metric regularity. SIAM J. Control Optim. 34, 1568–1591 (1996)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Crandall, M.G., Lions, P.-L: Viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc. 277, 1–42 (1983)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Gieraltowska-Kedzierska, M., Van Vleck, F.S.: Fréchet differentiability vs. Gâteaux differentiability of Lipschitz functions. Proc. Amer. Math. Soc. 114, 905–907 (1992)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Kelley, J.L., Namioka, I.: Linear Topological Spaces. Springer, New York (1976)zbMATHGoogle Scholar
  9. 9.
    Mordukhovich, B.S.: Maximum principle in problems of time optimal control with nonsmooth constraints. J. Appl. Math. Mech. 40, 960–969 (1976)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Mordukhovich, B.S.: Metric approximations and necesary optimality conditions for general classes of nonsmooth extremal problems. Soviet Math. Dokl. 22, 526–530 (1980)zbMATHGoogle Scholar
  11. 11.
    Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, I: Basic Theory. Springer, Berlin (2006)Google Scholar
  12. 12.
    Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, II: Applications. Springer, Berlin (2006)Google Scholar
  13. 13.
    Mordukhovich, B.S., Shao, Y.: Fuzzy calculus for coderivatives of multifunctions. Nonlinear Anal. 29, 605–626 (1997)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Mordukhovich, B.S., Shao, Y.: Nonconvex differential calculus for infinite-dimensional multifunctions. Set-Valued Anal. 4, 205–236 (1996)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Mordukhovich, B.S., Shao, Y.: Fuzzy calculus for coderivatives of multifunctions. Nonlinear Anal. 29(6), 605–626 (1997)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Mordukhovich, B.S., Shao, Y., Zhu, Q.J.: Viscosity coderivatives and their limiting behavior in smooth Banach spaces. Positivity 4, 1–39 (2000)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Mordukhovich, B.S., Wang, B.: Sequential normal compactness in variational analysis. Nonlinear Anal. 47, 717–728 (2001)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Mordukhovich, B.S., Wang, B.: Extensions of generalized differential calculus in Asplund spaces. J. Math. Anal. Appl. 272, 164–186 (2002)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Mordukhovich, B.S., Wang, B.: Calculus of sequential normal compactness in variational analysis. J. Math. Anal. Appl. 282, 63–84 (2003)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Phelps, R.R.: Convex Functions, Monotone Operators and Differentiability, 2nd edn. Springer, Berlin (1993)Google Scholar
  21. 21.
    Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (1998)CrossRefGoogle Scholar
  22. 22.
    Rudin, W.: Functional Analysis, 2nd edn. McGraw-Hill (1991)Google Scholar
  23. 23.
    Wang, B.: The fuzzy intersection rule in variational analysis with applications. J. Math. Anal. Appl. 323, 1365–1372 (2006)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Wang, B., Wang, D.: On the fuzzy intersection rule. Nonlinear Anal. 75, 1623–1634 (2012)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Wang, B., Wang, D.: Generalized sequential normal compactness in Asplund spaces. Applicable Anal.  https://doi.org/10.1080/00036811.2013.879384 (2014)
  26. 26.
    Wang, B., Yang, X.: Weak differentiability with applications to variational analysis. Set-valued Var. Anal.  https://doi.org/10.1007/s11228-015-0341-8 (2015)
  27. 27.
    Wang, B., Zhu, M., Zhao, Y.: Generalized sequential normal compactness in Banach spaces. Nonlinear Anal. 79, 221–232 (2013)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Zhu, Q.J.: Nonconvex separation theorem for multifunctions, subdifferential calculus and applications. Set-Valued Anal. 12, 275–290 (2004)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Fariborz Maseeh Department of Mathematics and StatisticsPortland State UniversityOregonUSA
  2. 2.Department of Mathematical SciencesUniversity of Massachusetts LowellLowellUSA
  3. 3.Department of Mathematics and StatisticsEastern Michigan UniversityYpsilantiUSA

Personalised recommendations