Advertisement

Set-Valued and Variational Analysis

, Volume 26, Issue 3, pp 693–728 | Cite as

Perturbed Evolution Problems with Continuous Bounded Variation in Time and Applications

  • Dalila Azzam-Laouir
  • Charles Castaing
  • M. D. P. Monteiro Marques
Article

Abstract

This paper is devoted to the study of evolution problems of the form \(-\frac {du}{dr}(t) \in A(t)u(t) + f(t, u(t))\) in a new setting, where, for each t, A(t) : D(A(t)) → 2 H is a maximal monotone operator in a Hilbert space H and the mapping tA(t) has continuous bounded or Lipschitz variation on [0, T], in the sense of Vladimirov’s pseudo-distance. The measure dr gives an upper bound of that variation. The perturbation f is separately integrable on [0, T] and separately Lipschitz on H. Several versions and new applications are presented.

Keywords

Bolza control problem Bounded variation Lipschitz mapping Maximal monotone operators Pseudo-distance Perturbations Skorokhod problem 

Mathematics Subject Classification (2010)

34H05 34K35 60H10 28A25 28C20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

M. D. P. Monteiro Marques was partially supported by Fundação para a Ciência e a Tecnologia, grant UID/MAT/04561/2013.

References

  1. 1.
    Adly, S., Haddad, T., Thibault, L.: Convex sweeping process in the framework of measure differential inclusions and evolution variational inequalities. Math. Program 148(1-2, Ser. B), 5–47 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Attouch, H., Cabot, A., Redont, P.: The dynamics of elastic shocks via epigraphical regularization of a differential inclusion. Barrier and Penalty Approximations. Advances in Mathematical Sciences and Applications, Gakkotosho, Tokyo, vol. 12 no. 1, pp. 273–306 (2002)Google Scholar
  3. 3.
    Azzam-Laouir, D., Izza, S., Thibault, L.: Mixed semicontinuous perturbation of nonconvex state-dependent sweeping process. Set Valued Var. Anal. 22, 271–283 (2014)zbMATHGoogle Scholar
  4. 4.
    Azzam-Laouir, D., Makhlouf, M., Thibault, L.: On perturbed sweeping process. Appl. Analysis. 95(2), 303–322 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Barbu, V.: Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff Int. Publ., Leyden (1976)CrossRefzbMATHGoogle Scholar
  6. 6.
    Benabdellah, H., Castaing, C.: BV Solutions of multivalued differential equations on closed moving sets in Banach spaces. Banach center publications, vol. 32. Institute of Mathematics, Polish academy of Sciences, Warszawa (1995)zbMATHGoogle Scholar
  7. 7.
    Brezis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North Holland (1979)Google Scholar
  8. 8.
    Castaing, C.: Topologie de la convergence uniforme sur les parties uniformément intégrables de \({L_{E}^{1}}\) et théorèmes de compacité faible dans certains espaces du type Köthe-Orlicz. Travaux Sém. Anal. Convexe 10(1), 27 (1980). exp. no. 5Google Scholar
  9. 9.
    Castaing, C., Duc Ha, T.X., Valadier, M.: Evolution equations governed by the sweeping process. Set-Valued Anal. 1, 109–139 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Castaing, C., Marcellin, S.: Evolution inclusions with pln functions and application to viscosity and control. JNCA 8(2), 227–255 (2007)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Castaing, C., Monteiro Marques, M.D.P.: BV periodic solutions of an evolution problem associated with continuous convex sets. Set-Valued Anal. 3, 381–399 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Castaing, C., Marques, M.M., Raynaud de Fitte, P.: Some problems in optimal control governed by the sweeping process. J. Nonlinear Convex Analysis 15(5), 1043–1070 (2014)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Castaing, C., Marques, M.M., Raynaud de Fitte, P.: A Skorohod problem governed by a closed convex moving set. J. Convex Analysis 23(2), 387–423 (2016)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Castaing, C., Raynaud de Fitte, P., Salvadori, A.: Some variational convergence results with application to evolution inclusions. Adv. Math. Econ 8, 33–73 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Castaing, C., Raynaud de Fitte, P., Valadier, M.: Young measures on topological spaces with applications in control theory and probability theory. Kluwer Academic Publishers, Dordrecht (2004)zbMATHGoogle Scholar
  16. 16.
    Castaing, C., Salvadori, A., Thibault, L.: Functional evolution equations governed by nonconvex sweeeping process. J. Nonlinear Convex Analysis 2(2), 217–241 (2001)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Castaing, C., Le Xuan, T., Raynaud de Fitte, P., Salvadori, A.: Some problems in second order evolution inclusions with boundary condition: a variational approach, to appear in Adv. Math. Econ. 21 (2017)Google Scholar
  18. 18.
    Castaing, C., Valadier, M.: Convex analysis and measurable multifunctions, lectures notes in mathematics, p. 580. Springer-Verlag, Berlin (1977)CrossRefzbMATHGoogle Scholar
  19. 19.
    Colombo, G., Goncharov, V.V.: The sweeping processes without convexity. Set- Valued Anal. 7, 357–374 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Edmond, J.F., Thibault, L.: Relaxation and optimal control problem involving a perturbed sweeping process. Math. Program, Ser. B 104, 347–373 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Grothendieck, A.: Espaces Vectoriels Topologiques Mat. São Paulo, São Paulo, 3rd edn. Publ. Soc. (1964)Google Scholar
  22. 22.
    Kenmochi, N.: Solvability of nonlinear evolution equations with time-dependent constraints and applications. Bull. Fac. Educ. Chiba Univ. 30 (1981)Google Scholar
  23. 23.
    Florescu, L.C., Godet-Thobie, C.: Young measures and compactness in measure spaces. De Gruyter, Berlin (2012)CrossRefzbMATHGoogle Scholar
  24. 24.
    Kunze, M., Monteiro Marques, M.D.P.: BV Solutions to evolution problems with time-dependent domains. Set-Valued Anal. 5, 57–72 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Moreau, J.J., Valadier, M.: A chain rule involving vector functions of bounded variations. J. Funct. Anal. 74(2), 333–345 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Monteiro Marques, M.D.P.: Perturbations convexes semi-continues supérieurement de problèmes d’évolution dans les espaces de Hilbert, Séminaire d’Analyse Convexe, Montpellier, vol. 14. exposé n. 2. (1984)Google Scholar
  27. 27.
    Monteiro Marques, M.D.P.: Differential inclusions nonsmooth mechanical problems, shocks and dry friction. Progress in Nonlinear Differential Equations and Their Applications, Birkhauser vol. 9 (1993)Google Scholar
  28. 28.
    Paoli, L.: An existence result for non-smooth vibro-impact problem. J. Differ. Equ. 211(2), 247–281 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Saidi, S., Thibault, L., Yarou, M.: Relaxation of optimal control problems involving time dependent subdifferential operators. Numer. Funct. Anal. Optim. 34(10), 1156–1186 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Schatzman, M.: Problèmes unilatéraux d’ évolution du second ordre en temps. Thèse de Doctorat d’ Etat es Sciences Mathématiques, Université Pierre et Marie Curie, Paris 6 (1979)Google Scholar
  31. 31.
    Thibault, L.: Propriétés des sous-différentiels de fonctions localement Lipschitziennes définies sur un espace de Banach séparable. Applications. Thèse, Université Montpellier II (1976)Google Scholar
  32. 32.
    Thibault, L.: Sweeping process with regular and nonregular sets. J. Differ. Equ. 193, 1–26 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Valadier, M.: Quelques résultats de base concernant le processus de la rafle. Sém. Anal. Convexe, Montpellier vol. 3 (1988)Google Scholar
  34. 34.
    Valadier, M.: Lipschitz approximations of the sweeping process (or Moreau) process. J. Differ. Equ. 88(2), 248–264 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Vladimirov, A.A.: Nonstationary dissipative evolution equations in a Hilbert space. Nonlinear Anal. 17, 499–518 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Vrabie, I.L.: Compactness methods for nonlinear evolution equations, Pitman Monographs and Surveys in Pure and Applied mathematics, Longman Scientific and Technical, vol. 32. Wiley, New York (1987)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Laboratoire de Mathématiques Pures et Appliquées, FSEIUniversité Mohammed Seddik Benyahia-JijelJijelAlgeria
  2. 2.Département de MathématiquesUniversité Montpellier IIMontpellierFrance
  3. 3.CMAF-CIO, Departamento de MatemáticaFaculdade de Ciências da Universidade de LisboaLisboaPortugal

Personalised recommendations