Advertisement

Set-Valued and Variational Analysis

, Volume 26, Issue 3, pp 561–579 | Cite as

On Second-Order Proto-Differentiability of Perturbation Maps

  • L. T. Tung
Article

Abstract

In this paper, second-order sensitivity analysis in vector optimization problems is considered. We prove that the efficient solution map and the efficient frontier map of a parameterized vector optimization problem are second-order proto-differentiable under some appropriate qualification conditions. Some sufficient conditions for inner and outer approximation of the second-order proto-derivative are also provided.

Keywords

Second-order proto-differentiability Second-order semi-differentiability Parameterized vector optimization problems Solution maps Frontier maps Second-order sensitivity analysis 

Mathematics Subject Classifications (2010)

90C46 49J52 46G05 90C26 90C29 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Birkhäuser, Boston (1990)MATHGoogle Scholar
  2. 2.
    Bonnans, J.F., Shapiro, A.: Pertubation Analysis of Optimization Problem. Springer, New York (2000)CrossRefGoogle Scholar
  3. 3.
    Chuong, T.D.: Derivatives of the efficient point multifunction in parametric vector optimization problems. J. Optim. Theory Appl. 156, 247–265 (2013)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Chuong, T.D., Yao, J.-C.: Generalized Clarke epiderivatives of parametric vector optimization problems. J. Optim. Theory Appl. 146, 77–94 (2010)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Durea, M., Strugariu, R.: Calculus of tangent sets and derivatives of set-valued maps under metric subregularity conditions. J. Glob. Optim. 56, 587–603 (2013)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Huy, N.Q., Lee, G.M.: Sensitivity of solutions to a parametric generalized equation. Set-Valued Anal. 16, 805–820 (2008)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Kalashnikov, V., Jadamba, B., Khan, A.A.: First and second-order optimality conditions in set optimization. In: Dempe, S., Kalashnikov, V. (eds.) Optimization with Multivalued Mappings, pp 265–276 (2006)Google Scholar
  8. 8.
    Kuk, H., Tanino, T., Tanaka, M.: Sensitivity analysis in vector optimization. J. Optim. Theory Appl. 89, 713–730 (1996)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Kuk, H., Tanino, T., Tanaka, M.: Sensitivity analysis in parameterized convex vector optimization. J. Math. Anal. Appl. 202, 511–522 (1996)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Lee, G.M., Huy, N.Q.: On proto-differentiablility of generalized perturbation maps. J. Math. Anal. Appl. 324, 1297–1309 (2006)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Lee, G.M., Huy, N.Q.: On sensitivity analysis in vector optimization. Taiwan. J. Math. 11, 945–958 (2007)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Levy, A.B., Poliquin, R.A., Rockafellar, R.T.: Stability of locally optimal solutions. SIAM J. Optim. 10, 580–604 (2000)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Levy, A.B., Rockafellar, R.T.: Sensitivity analysis of solutions to generalized equations. Trans. Am. Math. Soc. 345, 661–671 (1994)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Levy, A.B., Rockafellar, R.T.: Variational conditions and the proto-differentiation of partial subgradient mappings. Nonlinear Anal. 26, 1951–1964 (1996)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Li, S.J., Teo, K.L., Yang, X.Q.: Higher-order optimality conditions for set-valued optimization. J. Optim. Theory Appl. 137, 533–553 (2008)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Li, S.J., Liao, C.M.: Second-order differentiability of generalized perturbation maps. J. Global Optim. 52, 243–252 (2012)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Li, S.J., Sun, X.K., Zhai, J.: Second-order contingent derivatives of set-valued mappings with application to set-valued optimization. Appl. Math. Comput. 218, 6874–6886 (2012)MathSciNetMATHGoogle Scholar
  18. 18.
    Li, S.J., Zhu, S.K., Li, X.B.: Second-order optimality conditions for strict efficiency of constrained set-valued optimization. J. Optim. Theory Appl. 155, 534–557 (2012)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, vol. I: Basic Theory. Springer, Berlin (2006)Google Scholar
  20. 20.
    Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, vol. II: Applications. Springer, Berlin (2006)Google Scholar
  21. 21.
    Mordukhovich, B.S., Outrata, J.V.: On second-order subdifferentials and their applications. SIAM J. Optim. 12, 139–169 (2001)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Mordukhovich, B.S., Rockafellar, R.T.: Second-order subdifferential calculus with applications to tilt stability in optimization. SIAM J. Optim. 22, 953–986 (2012)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Mordukhovich, B.S., Rockafellar, R.T., Sarabi, M.E.: Characterizations of full stability in constrained optimization. SIAM J. Optim. 23, 1810–1849 (2013)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Mordukhovich, B.S., Nghia, T.T.A., Rockafellar, R.T.: Full stability in finite-dimensional optimization. Math. Oper. Res. 40, 226–252 (2015)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Penot, J.P.: Second-order conditions for optimization problems with constraints. SIAM J. Control Optim. 37, 303–318 (1998)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Poliquin, R.A., Rockafellar, R.T.: Tilt stability of a local minimum. SIAM J. Optim. 8, 287–299 (1998)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Ren, J.J., Sen, P.K.: Second-order Hadamard differentiability in statistical applications. J. Multivariate Anal. 77, 187–228 (2011)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Rockafellar, R.T.: Proto-differentiablility of set-valued mappings and its applications in optimization. Ann. Inst. H. Poincaré Anal. Non Linéaire 6, 449–482 (1989)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis, 3rd edn. Springer, Berlin (2009)MATHGoogle Scholar
  30. 30.
    Sawaragi, Y., Nakayama, H., Tanino, T.: Theory of Multiobjective Optimization. Academic Press, New York (1985)MATHGoogle Scholar
  31. 31.
    Shi, D.S: Contingent derivative of the perturbation map in multiobjective optimization. J. Optim. Theory Appl. 70, 385–396 (1991)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Shi, D.S: Sensitivity analysis in convex vector optimization. J. Optim. Theory Appl. 77, 145–159 (1993)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Tanino, T.: Sensitivity analysis in multiobjective optimization. J. Optim. Theory Appl. 56, 479–499 (1988)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Tanino, T.: Stability and sensitivity analysis in convex vector optimization. SIAM J. Control Optim. 26, 521–536 (1988)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Tung, L.T.: Second-order radial-asymptotic derivatives and applications in set-valued vector optimization. Pacific J. Optim., accepted for publicationGoogle Scholar
  36. 36.
    Wang, Q.L., Li, S.J.: Sensitivity and stability for the second-order contingent derivative of the proper perturbation map in vector optimization. Optim. Lett. 6, 731–748 (2012)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Wang, Q.L., Li, S.J.: Second-order contingent derivative of the pertubation map in multiobjective optimization. Fixed Point Theory Appl. 2011. Article ID 857520 (2011)Google Scholar
  38. 38.
    Ward, D.: A chain rule for first and second order epiderivatives and hypoderivatives. J. Math. Anal. Appl. 348, 324–336 (2008)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of Mathematics, College of Natural SciencesCantho UniversityCanthoVietnam

Personalised recommendations