Parity-preserving reversible flip-flops with low quantum cost in nanoscale

  • Mojtaba Noorallahzadeh
  • Mohammad MoslehEmail author


In recent years, reversible logic has attracted high importance because of its in-cognitive property of reduction in energy dissipation which is the main requirement in low-power digital circuits. Reversible logic is one of emerging fields of research, which is used in various fields such as low-power CMOS, DNA computing, quantum computing, fault tolerance and nanotechnology. A circuit is reversible if it has the same number of inputs and outputs, and there is a one-to-one correspondence between them. A reversible circuit is parity-preserving if the EXOR of the inputs is equal to the EXOR of the outputs. Flip-flops are considered as one of the most important digital designs that are widely used as building blocks in the design of sequential circuits. In this paper, two new 4 × 4 parity-preserving reversible blocks are first proposed, called PNM1 and PNM2, respectively. Quantum syntheses of the proposed blocks are carried out using the Miller et al. method. In the following, effective designs of parity-preserving reversible D, T and J-K flip-flops along with their master–slave versions are introduced using the proposed parity-preserving reversible blocks and DFG gates. Finally, a 4-bit asynchronous up-counter is designed using the proposed parity-preserving reversible D flip-flop and FRG gate. The results of the comparisons show that although the proposed structures are close to previous designs in terms of gate count, constant input and garbage output criteria, they are superior in terms of quantum cost.


Nanotechnology Reversible logic Parity-preserving Flip-flop Master–slave 



  1. 1.
    Landauer R (1961) Irreversibility and heat generation in the computing process. IBM J Res Dev 5(3):183–191MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Bennett CH (1973) Logical reversibility of computation. IBM J Res Dev 17(6):525–532MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Perkowski M et al (2001) A general decomposition for reversible logic. In: Proceedings of RM’2001, Starkville, pp 119–138Google Scholar
  4. 4.
    Toffoli T (1980) Reversible computing. In: International Colloquium on Automata, Languages, and Programming. Springer, pp 632–644Google Scholar
  5. 5.
    Allen JS, Biamonte JD, Perkowski M (2005) ATPG for reversible circuits using technology-related fault models. In: Proceedings of the 7th international symposium on representations and methodology of future computing technologies, RM2005, Tokyo, Japan, pp 100–107Google Scholar
  6. 6.
    Taraphdar C, Chattopadhyay T, Roy JN (2010) Mach-Zehnder interferometer-based all-optical reversible logic gate. Opt Laser Technol 42(2):249–259CrossRefGoogle Scholar
  7. 7.
    Nielson MA, Chuang IL (2000) Quantum computation and quantum information. Cambridge University Press, CambridgeGoogle Scholar
  8. 8.
    Wood DH, Chen J (2004) Fredkin gate circuits via recombination enzymes. In: Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No. 04TH8753), 2004, vol 2. IEEE, pp 1896–1900Google Scholar
  9. 9.
    Bandyopadhyay S, Balandin A, Roychowdhury V, Vatan F (1998) Nanoelectronic implementations of reversible and quantum logic. Superlattices Microstruct 23(3–4):445–464CrossRefGoogle Scholar
  10. 10.
    Barenco A et al (1995) Elementary gates for quantum computation. Phys Rev A 52(5):3457CrossRefGoogle Scholar
  11. 11.
    Morrison MA (2012) Design of a reversible alu based on novel reversible logic structuresGoogle Scholar
  12. 12.
    Hung WN, Song X, Yang G, Yang J, Perkowski M (2004) Quantum logic synthesis by symbolic reachability analysis. In: Proceedings of the 41st Annual Design Automation Conference, 2004. ACM, pp 838–841Google Scholar
  13. 13.
    Mohammadi M, Eshghi M (2009) On figures of merit in reversible and quantum logic designs. Quantum Inf Process 8(4):297–318MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Babu HMH, Mia MS (2016) Design of a compact reversible fault tolerant division circuit. Microelectron J 51:15–29CrossRefGoogle Scholar
  15. 15.
    Biswas AK, Hasan MM, Chowdhury AR, Babu HMH (2008) Efficient approaches for designing reversible binary coded decimal adders. Microelectron J 39(12):1693–1703CrossRefGoogle Scholar
  16. 16.
    Akbar EPA, Haghparast M, Navi K (2011) Novel design of a fast reversible Wallace sign multiplier circuit in nanotechnology. Microelectron J 42(8):973–981CrossRefGoogle Scholar
  17. 17.
    Noorallahzadeh M, Mosleh M (2019) Efficient designs of reversible latches with low quantum cost. IET Circuits Dev Syst 13(6):806–815CrossRefGoogle Scholar
  18. 18.
    Misra NK, Sen B, Wairya S (2017) Towards designing efficient reversible binary code converters and a dual-rail checker for emerging nanocircuits. J Comput Electron 16(2):442–458CrossRefGoogle Scholar
  19. 19.
    PourAliAkbar E, Mosleh M (2019) An efficient design for reversible wallace unsigned multiplier. Theor Comput Sci 773:43–52MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Parhami B (2006) Fault-tolerant reversible circuits. In: 2006 Fortieth Asilomar Conference on Signals, Systems and Computers, 2006. IEEE, pp 1726–1729Google Scholar
  21. 21.
    Haghparast M, Navi K (2008) Design of a novel fault tolerant reversible full adder for nanotechnology based systems. World Appl Sci J 3(1):114–118Google Scholar
  22. 22.
    Valinataj M (2017) Novel parity-preserving reversible logic array multipliers. J Supercomput 73(11):4843–4867CrossRefGoogle Scholar
  23. 23.
    Ariafar Z, Mosleh M (2019) Effective designs of reversible vedic multiplier. Int J Theor Phys 58(8):2556–2574MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Dastan F, Haghparast M (2011) A novel nanometric fault tolerant reversible divider. Int J Phys Sci 6(24):5671–5681Google Scholar
  25. 25.
    Safari P, Haghparast M, Azari A, Branch A (2012) A design of fault tolerant reversible arithmetic logic unit. Life Sci J 9(3):643–646Google Scholar
  26. 26.
    Misra NK, Wairya S, Sen B (2018) Design of conservative, reversible sequential logic for cost efficient emerging nano circuits with enhanced testability. Ain Shams Eng J 9(4):2027–2037CrossRefGoogle Scholar
  27. 27.
    Sarker A, Babu HMH, Rashid SMM (2015) Design of a DNA-based reversible arithmetic and logic unit. IET Nanobiotechnol 9(4):226–238CrossRefGoogle Scholar
  28. 28.
    Thapliyal H, Ranganathan N (2010) Design of reversible sequential circuits optimizing quantum cost, delay, and garbage outputs. ACM J Emerg Technol Comput Syst (JETC) 6(4):14Google Scholar
  29. 29.
    Feynman RP (1986) Quantum mechanical computers. Found Phys 16(6):507–531MathSciNetCrossRefGoogle Scholar
  30. 30.
    Morrison M, Ranganathan N (2011) Design of a reversible ALU based on novel programmable reversible logic gate structures. In: 2011 IEEE Computer Society Annual Symposium on VLSI, 2011. IEEE, pp 126–131Google Scholar
  31. 31.
    Smolin JA, DiVincenzo DP (1996) Five two-bit quantum gates are sufficient to implement the quantum Fredkin gate. Phys Rev A 53(4):2855CrossRefGoogle Scholar
  32. 32.
    Morrison M, Ranganathan N (2013) A novel optimization method for reversible logic circuit minimization. In: 2013 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), 2013. IEEE, pp 182–187Google Scholar
  33. 33.
    Rahman MM, Banerjee A, Dueck GW, Pathak A (2011) Two-qubit quantum gates to reduce the quantum cost of reversible circuit. In: 2011 41st IEEE International Symposium on Multiple-Valued Logic, 2011. IEEE, pp 86–92Google Scholar
  34. 34.
    Miller DM, Maslov D, Dueck GW (2003) A transformation based algorithm for reversible logic synthesis. In: Proceedings 2003. Design Automation Conference (IEEE Cat. No. 03CH37451), 2003. IEEE, pp 318–323Google Scholar
  35. 35.
    Sasanian Z (2012) Technology mapping and optimization for reversible and quantum circuits, Doctoral dissertationGoogle Scholar
  36. 36.
    Maslov D, Dueck GW, Miller DM (2005) Toffoli network synthesis with templates. IEEE Trans Comput Aided Des Integr Circuits Syst 24(6):807–817CrossRefGoogle Scholar
  37. 37.
    Maslov D, Dueck GW, Miller DM (2003) Simplification of Toffoli networks via templates. In: 16th Symposium on Integrated Circuits and Systems Design, 2003. SBCCI 2003. Proceedings, 2003. IEEE, pp 53–58Google Scholar
  38. 38.
    Ali MB, Hirayama T, Yamanaka K, Nishitani Y (2018) Function design for minimum multiple-control Toffoli circuits of reversible adder/subtractor blocks and arithmetic logic units. IEICE Trans Fundam Electron Commun Comput Sci 101(12):2231–2243CrossRefGoogle Scholar
  39. 39.
    Ali MB, Hirayama T, Yamanaka K, Nishitani Y (2015) Quantum cost reduction of reversible circuits using new Toffoli decomposition techniques. In: 2015 International Conference on Computational Science and Computational Intelligence (CSCI), 2015. IEEE, pp 59–64Google Scholar
  40. 40.
    Pareek V, Gupta S, Jain SC, Kumar A (2014) A novel realization of sequential reversible building blocks. In: Future Computing 2014, the Sixth International Conference on Future Computational Technologies and Applications, 2014, pp 1–6Google Scholar
  41. 41.
    Gharajeh MS, Haghparast M (2012) On design of a fault tolerant reversible 4-bit binary counter with parallel load. Aust J Basic Appl Sci 6(7):430–446Google Scholar
  42. 42.
    Zhou R-G, Li Y-C, Zhang M-Q (2014) Novel designs for fault tolerant reversible binary coded decimal adders. Int J Electron 101(10):1336–1356CrossRefGoogle Scholar
  43. 43.
    Haghparast M, Bolhassani A (2016) On design of parity preserving reversible adder circuits. Int J Theor Phys 55(12):5118–5135zbMATHCrossRefGoogle Scholar
  44. 44.
    Misra NK, Sen B, Wairya S, Bhoi B (2017) Testable novel parity-preserving reversible gate and low-cost quantum decoder design in 1D molecular-QCA. J Circuits Syst Comput 26(09):1750145CrossRefGoogle Scholar
  45. 45.
    Arabani SR, Reshadinezhad MR, Haghparast M (2018) Design of a parity preserving reversible full adder/subtractor circuit. Int J Comput Intell Stud 7(1):19–32CrossRefGoogle Scholar
  46. 46.
    Islam M, Begum Z (2010) Reversible logic synthesis of fault tolerant carry skip BCD adder. arXiv:1008.3288
  47. 47.
    Fredkin E, Toffoli T (1982) Conservative logic. Int J Theor Phys 21(3–4):219–253MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Hagparast M, Navi K (2008) A novel fault tolerant reversible gate for nanotechnology based system. Am J Appl Sci 5(5):519–523CrossRefGoogle Scholar
  49. 49.
    Thapliyal H, Srinivas M (2006) An extension to DNA based Fredkin gate circuits: design of reversible sequential circuits using Fredkin gates. arXiv:cs/0603092
  50. 50.
    Thapliyal H, Ranganathan N (2009) Reversible logic-based concurrently testable latches for molecular QCA. IEEE Trans Nanotechnol 9(1):62–69CrossRefGoogle Scholar
  51. 51.
    Haghparast M, Navi K (2011) Novel reversible fault tolerant error coding and detection circuits. Int J Quantum Inf 9(02):723–738zbMATHCrossRefGoogle Scholar
  52. 52.
    Pareek V (2014) A new gate for optimal fault tolerant & testable reversible sequential circuit design. arXiv:1410.2373
  53. 53.
    Goswami M, Raj G, Narzary A, Sen B (2018) A methodology to design online testable reversible circuits. In: International Symposium on VLSI Design and Test, 2018. Springer, pp 322–334Google Scholar
  54. 54.
    Walus K, Dysart TJ, Jullien GA, Budiman RA (2004) QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans Nanotechnol 3(1):26–31CrossRefGoogle Scholar
  55. 55.
    Seyedi S, Darbandi M, Navimipour NJ (2019) Designing an efficient fault tolerance D-latch based on quantum-dot cellular automata nanotechnology. Optik 185:827–837CrossRefGoogle Scholar
  56. 56.
    Fam SR, Navimipour NJ (2019) Design of a loop-based random access memory based on the nanoscale quantum dot cellular automata. Photon Netw Commun 37(1):120–130CrossRefGoogle Scholar
  57. 57.
    Ahmadpour S-S, Mosleh M (2019) New designs of fault-tolerant adders in quantum-dot cellular automata. Nano Commun Netw 19:10–25CrossRefGoogle Scholar
  58. 58.
    Ahmadpour SS, Mosleh M, Rasouli Heikalabad S (2019) Robust QCA full-adders using an efficient fault-tolerant five-input majority gate. Int J Circuit Theory Appl 47(7):1037–1056CrossRefGoogle Scholar
  59. 59.
    Ahmadpour S-S, Mosleh M (2018) A novel fault-tolerant multiplexer in quantum-dot cellular automata technology. J Supercomput 74(9):4696–4716CrossRefGoogle Scholar
  60. 60.
    Ahmadpour S-S, Mosleh M, Heikalabad SR (2018) A revolution in nanostructure designs by proposing a novel QCA full-adder based on optimized 3-input XOR. Phys B 550:383–392CrossRefGoogle Scholar
  61. 61.
    Abedi D, Jaberipur G, Sangsefidi M (2015) Coplanar full adder in quantum-dot cellular automata via clock-zone-based crossover. IEEE Trans Nanotechnol 14(3):497–504CrossRefGoogle Scholar
  62. 62.
    Srivastava S, Asthana A, Bhanja S, Sarkar S (2011) QCAPro-an error-power estimation tool for QCA circuit design. In: 2011 IEEE International Symposium of Circuits and Systems (ISCAS), 2011. IEEE, pp 2377–2380Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Computer Engineering, Dezful BranchIslamic Azad UniversityDezfulIran

Personalised recommendations