Advertisement

The divide-and-swap cube: a new hypercube variant with small network cost

  • Jong-Seok Kim
  • Donghyun Kim
  • Ke Qiu
  • Hyeong-Ok Lee
Article
  • 5 Downloads

Abstract

The hypercube is one of the most popular interconnection networks. Its network cost is \(O(n^2)\). In this paper, we propose a new hypercube variant, the divide-and-swap cube \(\textit{DSC}(n)\,(n=2^d,\,d\ge 1)\), which reduces the network cost to \(O(n \log n)\) while maintaining the same number of nodes and the same asymptotic performances for fundamental algorithms such as the broadcasting. The new network has nice hierarchical properties. We first show that the diameter of \(\textit{DSC}(n)\) is lower than or equal to \(\frac{5n}{4}-1\). However, unlike the hypercube of dimension n whose degree is n, the node degree of the network is \(\log n + 1\), resulting in a network cost of \(O(n \log n)\). We then examine the one-to-all and all-to-all broadcasting times of \(\textit{DSC}(n)\), based on the single-link-available and multiple-link-available models. We also present an upper bound on the bisection width of the \(\textit{DSC}(n)\) and show that \(\textit{DSC}(n)\) is Hamiltonian. Finally, we introduce the folded divide-and-swap cube, \(\textit{FDSC}(n)\), a variant of the \(\textit{DSC}(n)\) and study its many properties including its hierarchical structure, routing algorithm, broadcasting algorithms, bisection width, and its Hamiltonicity. All the broadcasting algorithms presented in this paper are asymptotically optimal.

Keywords

Interconnection network Divide-and-swap cube Folded divide-and-swap cube Network cost Diameter Routing Broadcasting Bisection width Hamiltonian cycle 

Notes

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education (2017R1D1A3B03032173). We are grateful to the anonymous referees for their helpful comments and suggestions.

References

  1. 1.
    Abraham S, Padmanabhan K (1991) The twisted cube topology for multiprocessors: a study in network asymmetry. J Parallel Distrib Comput 13(1):104–110CrossRefGoogle Scholar
  2. 2.
    Akers SB, Harel D, Krishnamurthy B (1989) A group-theoretic model for symmetric interconnection network. IEEE Trans Comput 38(4):555–565MathSciNetCrossRefGoogle Scholar
  3. 3.
    Arabnia HR, Oliver MA (1987) A transputer network for the arbitrary rotation of digitised images. Comput J 30(5):425–433CrossRefGoogle Scholar
  4. 4.
    Arabnia HR, Smith JW (1993) A reconfigurable interconnection network for imaging operations and its implementation using a multi-stage switching box. In: Proceedings of the 7th Annual International High Performance Computing Conference. The 1993 High Performance Computing: New Horizons Supercomputing Symposium, Calgary, Alberta, Canada, pp 349–357Google Scholar
  5. 5.
    Arabnia HR, Taha TR (1998) A parallel numerical algorithm on a reconfigurable multi-ring network. J Telecommun Syst 10:185–203CrossRefGoogle Scholar
  6. 6.
    Bornstein CF, Litman A, Maggs BM, Sitaraman RK, Yatzkar T (2001) On the bisection width and expansion of butterfly networks. Theory Comput Syst 34:491–518MathSciNetCrossRefGoogle Scholar
  7. 7.
    Chang CP, Wang JN, Hsu LH (1999) Topological properties of twisted cube. Inf Sci 113(1–2):147–167MathSciNetCrossRefGoogle Scholar
  8. 8.
    Choudum SA, Sunitha V (2002) Augmented cubes. Networks 40(2):71–84MathSciNetCrossRefGoogle Scholar
  9. 9.
    Cull P, Larson SM (1995) The Möbius cubes. IEEE Trans Comput 44(5):647–659MathSciNetCrossRefGoogle Scholar
  10. 10.
    De Azevedo MM, Bagherzadeh N (1995) Broadcasting algorithms for the star-connected cycles interconnection network. J Parallel Distrib Comput 25:209–222CrossRefGoogle Scholar
  11. 11.
    Díaz J, Serna MJ, Wormald MC (2007) Bounds on the bisection width for random \(d\)-regular graphs. Theo Comput Sci 382:120–130MathSciNetCrossRefGoogle Scholar
  12. 12.
    Duh DR, Chen GH, Fang JF (1995) Algorithms and properties of a new two-level network with folded hypercubes as basic modules. IEEE Trans Parallel Distrib Syst 6(7):714–723CrossRefGoogle Scholar
  13. 13.
    Efe K (1991) A variation on the hypercube with lower diameter. IEEE Trans Comput 40(11):1312–1316CrossRefGoogle Scholar
  14. 14.
    Efe K (1992) The crossed cube architecture for parallel computing. IEEE Trans Parallel Distrib Syst 3(5):513–524CrossRefGoogle Scholar
  15. 15.
    El-Amawy A, Latifi S (1991) Properties and performance of folded hypercubes. IEEE Trans Parallel Distrib Syst 2(1):31–42CrossRefGoogle Scholar
  16. 16.
    Fan J, Jia X (2007) Embedding meshes into crossed cubes. Inf Sci 177(15):3151–3160CrossRefGoogle Scholar
  17. 17.
    Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness. Freeman, San FranciscozbMATHGoogle Scholar
  18. 18.
    Ghose K, Desai KR (1995) Hierarchical cubic networks. IEEE Trans Parallel Distrib Syst 6(4):427–436CrossRefGoogle Scholar
  19. 19.
    Harary F, Hayes JP, Wu HJ (1988) A survey of the theory of hypercube graphs. Comput Math Appl 15(4):277–289MathSciNetCrossRefGoogle Scholar
  20. 20.
    Hsu LH, Lin CK (2008) Graph theory and interconnection networks. CRC Press, Boca RatonzbMATHGoogle Scholar
  21. 21.
    Johnson SL, Ho CT (1989) Optimal broadcasting and personalized communication in hypercubes. IEEE Trans Comput 38(9):1249–1268MathSciNetCrossRefGoogle Scholar
  22. 22.
    Kim JS, Kim SW, Qiu K, Lee HO (2014) Some properties and algorithms for the hyper-torus network. J Supercomput 69(1):121–138CrossRefGoogle Scholar
  23. 23.
    Li TK, Tan JJM, Hsu LH, Sung TY (2001) The shuffle-cubes and their generalization. Inf Process Lett 77(1):35–41MathSciNetCrossRefGoogle Scholar
  24. 24.
    Li K, Mu Y, Li K, Min G (2013) Exchanged crossed cube: a novel interconnection network for parallel computation. IEEE Trans Parallel Distrib Syst 24(11):2211–2219CrossRefGoogle Scholar
  25. 25.
    Loh PKK, Hsu WJ, Pan Y (2005) The exchanged hypercube. IEEE Trans Parallel Distrib Syst 16(9):866–874CrossRefGoogle Scholar
  26. 26.
    Mendia VE, Sarkar D (1992) Optimal broadcasting on the star graph. IEEE Trans Parallel Distrib Syst 3(4):389–396MathSciNetCrossRefGoogle Scholar
  27. 27.
    Mkwawa IM, Kouvatsos DD (2003) An optimal neighborhood broadcasting scheme for star interconnection networks. J Interconnect Netw 4(1):103–111CrossRefGoogle Scholar
  28. 28.
    Monien B, Preis R (2006) Upper bounds on the bisection width of 3- and 4-regular graphs. J Discrete Algorithms 4(3):475–498MathSciNetCrossRefGoogle Scholar
  29. 29.
    Parhami B, Kwai DM (2001) A unified formulation of honeycomb and diamond networks. IEEE Trans Parallel Distrib Syst 12(1):74–80CrossRefGoogle Scholar
  30. 30.
    Rahman MS, Kaykobad M (2005) On Hamiltonian cycles and Hamiltonian paths. Inf Process Lett 94(1):37–41MathSciNetCrossRefGoogle Scholar
  31. 31.
    Tang KW, Kamoua R (2007) An upper bound for the bisection width of a diagonal mesh. IEEE Trans Comput 56(3):429–431MathSciNetCrossRefGoogle Scholar
  32. 32.
    Wang D (2001) Embedding Hamiltonian cycles into folded hypercubes with faulty links. J Parallel Distrib Comput 61(4):545–564CrossRefGoogle Scholar
  33. 33.
    Yang XF, Evans DJ, Megson GM (2005) The locally twisted cubes. Int J Comput Math 82(4):401–413MathSciNetCrossRefGoogle Scholar
  34. 34.
    Yun SK, Park KH (1998) Comments on “hierarchical cubic networks”. IEEE Trans Parallel Distrib Syst 9(4):410–414CrossRefGoogle Scholar
  35. 35.
    Zhou W, Fan J, Jia X, Zhang S (2012) The spined cube: a new hypercube variant with smaller diameter. Inf Process Lett 111(12):561–567MathSciNetCrossRefGoogle Scholar
  36. 36.
    Zhu Q, Liu SY, Xu M (2008) On conditional diagnosability of the folded hypercubes. Inf Sci 178(4):1069–1077MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jong-Seok Kim
    • 1
  • Donghyun Kim
    • 2
  • Ke Qiu
    • 3
  • Hyeong-Ok Lee
    • 4
  1. 1.Department of Mathematics and PhysicsNorth Carolina Central UniversityDurhamUSA
  2. 2.Department of Computer ScienceKennesaw State UniversityMariettaUSA
  3. 3.Department of Computer ScienceBrock UniversitySt. CatharinesCanada
  4. 4.Department of Computer EducationSunchon National UniversitySunchonSouth Korea

Personalised recommendations