Advertisement

The Journal of Supercomputing

, Volume 75, Issue 12, pp 7799–7813 | Cite as

Domino pattern formation by cellular automata agents

  • Rolf Hoffmann
  • Dominique DésérableEmail author
Article

Abstract

Considered is a 2d cellular automaton with moving agents in a multi-agent system. The objective is to find agents controlled by a finite-state program (FSP) that can form domino patterns. The quality of a formed pattern is measured by the degree of order computed by counting matching \(3 \times 3\) templates. An agent reacts on its own color, the color in front and whether it is blocked or not. It can change the color, move or not and turn into any direction. Four FSPs were evolved with k agents (\(1 \le k \le 4\)) initially placed in the corners of the field. For a \(12 \times 12\) training field, the aimed pattern could be formed with a 100% degree of order. The performance was also high with other field sizes. Livelocks are avoided by using three different variants of the evolved FSP. The degree of order usually fluctuates after reaching a certain threshold, but it can also be stable, and the agents may show the termination by running in a cycle or by stopping their activity.

Keywords

Cellular automata agents Multi-agent system Pattern formation Evolving FSM behavior Spatial computing 

References

  1. 1.
    Shi D, He P, Lian J, Chaud X, Bud’ko SL, Beaugnon E, Wang LM, Ewing RC, Tournier R (2005) Magnetic alignment of carbon nanofibers in polymer composites and anisotropy of mechanical properties. J Appl Phys 97:064312CrossRefGoogle Scholar
  2. 2.
    Itoh M, Takahira M, Yatagai T (1998) Spatial arrangement of small particles by imaging laser trapping system. Opt Rev 5(1):55–58CrossRefGoogle Scholar
  3. 3.
    Jiang Y, Narushima T, Okamoto H (2010) Nonlinear optical effects in trapping nanoparticles with femtosecond pulses. Nat Phys 6:1005–1009CrossRefGoogle Scholar
  4. 4.
    Niss M (2005) History of the Lenz–Ising model, 1920–1950. From ferromagnetic to cooperative phenomena. Arch Hist Exact Sci 59(3):267–318MathSciNetCrossRefGoogle Scholar
  5. 5.
    Press D, Ladd TD, Zhang B, Yamamoto Y (2008) Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456:218–221CrossRefGoogle Scholar
  6. 6.
    Bagnold RE (1941) The physics of blown sand and desert dunes. Chapman and Hall, MethuenGoogle Scholar
  7. 7.
    Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond B 237:37–72MathSciNetCrossRefGoogle Scholar
  8. 8.
    Tyson JJ (1976) The Belousov–Zhabotinskii reaction. Lecture Notes in BiomathematicsGoogle Scholar
  9. 9.
    Greenberg JM, Hastings SP (1978) Spatial patterns for discrete models of diffusion in excitable media. SIAM J Appl Math 34(3):515–523MathSciNetCrossRefGoogle Scholar
  10. 10.
    Progogine I, Stengers I (1983) Order out of chaos. Heinemann, LondonGoogle Scholar
  11. 11.
    Chopard B, Droz M (1998) Cellular automata modeling of physical systems. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  12. 12.
    Deutsch A, Dormann S (2005) Cellular automaton modeling of biological pattern formation. Birkäuser, BaselzbMATHGoogle Scholar
  13. 13.
    Désérable D, Dupont P, Hellou M, Kamali-Bernard S (2011) Cellular automata in complex matter. Complex Syst 20(1):67–91MathSciNetCrossRefGoogle Scholar
  14. 14.
    Wolfram S (1983) Statistical mechanics of cellular automata. Rev Mod Phys 55(3):601–644MathSciNetCrossRefGoogle Scholar
  15. 15.
    Nagpal R (2008) Programmable pattern-formation and scale-independence. In: Minai AA, Bar-Yam Y (eds) Unifying themes in complex systems IV, pp 275–282Google Scholar
  16. 16.
    Yamins D, Nagpal R (2008) Automated global-to-local programming in 1-D spatial multi-agent systems. In: Proceedings of the 7th International Conference AAMAS, pp 615–622Google Scholar
  17. 17.
    Hoffmann R (2014) How agents can form a specific pattern. In: Wa̧s J, Sirakoulis G, Bandini S (eds) Cellular automata, LNCS, vol 8751, pp 660–669Google Scholar
  18. 18.
    Hoffmann R (2016) Cellular automata agents form path patterns effectively. Acta Phys Pol B Proc Suppl 9(1):63–75CrossRefGoogle Scholar
  19. 19.
    Hoffmann R, Désérable D (2016) Line patterns formed by cellular automata agents. In: El Yacoubi S, Wa̧s J, Bandini S (eds) Cellular automata, LNCS, vol 9863, pp 424–434Google Scholar
  20. 20.
    Birgin EG, Lobato RD, Morabito R (2010) An effective recursive partitioning approach for the packing of identical rectangles in a rectangle. J Oper Res Soc 61:303–320CrossRefGoogle Scholar
  21. 21.
    Hoffmann R, Désérable D (2017) Generating maximal domino patterns by cellular automata agents. In: Malyshkin V (ed) PaCT 2017, LNCS, vol 10421, pp 18–31Google Scholar
  22. 22.
    Hoffmann R, Désérable D, Seredyński F (2018) Stability levels and termination in evolved CA agents for the black-pattern task. In: Cellular automata, ACRI 2018. http://wikicfp.com/cfp/servlet/event.showcfp?eventid=72598&copyownerid=106289

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Technische Universität DarmstadtDarmstadtGermany
  2. 2.Institut National des Sciences AppliquéesRennesFrance

Personalised recommendations