Adaptive Fregean Set Theory

  • Diderik BatensEmail author


This paper defines provably non-trivial theories that characterize Frege’s notion of a set, taking into account that the notion is inconsistent. By choosing an adaptive underlying logic, consistent sets behave classically notwithstanding the presence of inconsistent sets. Some of the theories have a full-blown presumably consistent set theory T as a subtheory, provided T is indeed consistent. An unexpected feature is the presence of classical negation within the language.


Fregean set theories Adaptive logics Content guidance Paraconsistency 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Part of the ideas and results were presented in conferences. My gratitude goes (i) to the audience of the 5th World Congress on Universal Logic (Istanbul, Turkey, 20–30 June 2015) for questions and suggestions, especially to Graham Priest with whom I also corresponded on the matter afterwards; (ii) to the attentive and helpful audience of an \(\exists \)ntia et Nomin\(\forall \) Workshop (Krakow, Poland, 9–11 September 2015); and (iii) to both referees for pointing out ways to improve the paper.


  1. 1.
    Batens, D., A survey of inconsistency-adaptive logics, in D. Batens, C. Mortensen, G. Priest, and J. Van Bendegem, (eds.), Frontiers of Paraconsistent Logic, Research Studies Press, 2000, pp. 49–73.Google Scholar
  2. 2.
    Batens, D., A general characterization of adaptive logics, Logique et Analyse 173–175: 45–68, 2001.Google Scholar
  3. 3.
    Batens, D., A universal logic approach to adaptive logics, Logica Universalis 1: 221–242, 2007.CrossRefGoogle Scholar
  4. 4.
    Batens, D., Towards a dialogic interpretation of dynamic proofs, in C. Dégremont, L. Keiff, and H. Rückert, (eds.), Dialogues, Logics and Other Strange Things. Essays in Honour of Shahid Rahman, College Publications, London, 2009, pp. 27–51.Google Scholar
  5. 5.
    Batens, D., The consistency of Peano Arithmetic. A defeasible perspective, in P. Allo, and B. Van Kerkhove, (eds.), Modestly Radical or Radically Modest. Festschrift for Jean Paul van Bendegem on the Occasion of His 60th Birthday, College Publications, London, 2014, pp. 11–59.Google Scholar
  6. 6.
    Batens, D., Tutorial on inconsistency-adaptive logics, in J. Béziau, M. Chakraborty, and S. Dutta, (eds.), New Directions in Paraconsistent Logic, Springer, 2015, pp. 3–38.Google Scholar
  7. 7.
    Batens, D., Spoiled for choice?, Journal of Logic and Computation 26: 65–95, 2016. E-published 2013: Scholar
  8. 8.
    Batens, D., and K. De Clercq, A rich paraconsistent extension of full positive logic, Logique et Analyse 185–188: 227–257, 2004.Google Scholar
  9. 9.
    Batens, D., K. De Clercq, P. Verdée, and J. Meheus, Yes fellows, most human reasoning is complex, Synthese 166: 113–131, 2009.CrossRefGoogle Scholar
  10. 10.
    Brady, R., Universal Logic, CSLI Publications, 2006.Google Scholar
  11. 11.
    da Costa, N. C. A., and E. H. Alves, A semantical analysis of the calculi \(\mathbf{C}_n\), Notre Dame Journal of Formal Logic 18: 621–630, 1977.CrossRefGoogle Scholar
  12. 12.
    Odintsov, S. P., and S. 0. Speranski, On algorithmic properties of propositional inconsistency-adaptive logics, Logic and Logical Philosophy 21: 209–228, 2012.Google Scholar
  13. 13.
    Odintsov, S. P., and S. 0. Speranski, Computability issues for adaptive logics in multi-consequence standard format, Studia Logica 101: 1237–1262, 2013. Scholar
  14. 14.
    Priest, G., Minimally inconsistent LP, Studia Logica 50: 321–331, 1991.CrossRefGoogle Scholar
  15. 15.
    Priest, G., Is arithmetic consistent?, Mind 103: 337–349, 1994.CrossRefGoogle Scholar
  16. 16.
    Priest, G., Inconsistent models of arithmetic. Part I: Finite models, Journal of Philosophical Logic 26: 223–235, 1997.Google Scholar
  17. 17.
    Priest, G., In Contradiction. A Study of the Transconsistent, Oxford University Press, 2:2006.Google Scholar
  18. 18.
    Quine, W. V. O., On the theory of types, The Journal of Symbolic Logic 3: 125–139, 1938.CrossRefGoogle Scholar
  19. 19.
    Shapere, D., Logic and the philosophical interpretation of science, in P. Weingartner, (ed.), Alternative Logics. Do sciences need them?, Springer, 2004, pp. 41–54.Google Scholar
  20. 20.
    Straßer, C., Adaptive Logic and Defeasible Reasoning. Applications in Argumentation, Normative Reasoning and Default Reasoning, Springer, 2014.Google Scholar
  21. 21.
    Van Bendegem, J., Strict, yet rich finitism, in Z. W. Wolkowski, (ed.), First International Symposium on Gödel’s Theorems, World Scientific, 1993, pp. 61–79.Google Scholar
  22. 22.
    Van Bendegem, J., Strict finitism as a viable alternative in the foundations of mathematics, Logique et Analyse 145: 23–40, 1994.Google Scholar
  23. 23.
    Verdée, P., Adaptive logics using the minimal abnormality strategy are \(\Pi ^1_1\)-complex, Synthese 167: 93–104, 2009.CrossRefGoogle Scholar
  24. 24.
    Verdée, P., Non-monotonic set theory as a pragmatic foundation of mathematics, Foundations of Science 18: 655–680, 2013.CrossRefGoogle Scholar
  25. 25.
    Verdée, P., Strong, universal and provably non-trivial set theory by means of adaptive logic, Logic Journal of the IGPL 21: 108–125, 2013.CrossRefGoogle Scholar
  26. 26.
    Weber, Z., Extensionality and restriction in naive set theory, Studia Logica 94: 87–104, 2010.CrossRefGoogle Scholar
  27. 27.
    Weber, Z., Transfinite numbers in paraconsistent set theory, Review of Symbolic Logic 3: 71–92, 2010.CrossRefGoogle Scholar
  28. 28.
    Weber, Z., Transfinite cardinals in paraconsistent set theory, Review of Symbolic Logic 5: 269–293, 2012.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Centre for Logic and Philosophy of ScienceGhent UniversityGhentBelgium

Personalised recommendations