The Explosion Calculus

  • Michael ArndtEmail author


A calculus for classical propositional sequents is introduced that consists of a restricted version of the cut rule and local variants of the logical rules. Employed in the style of proof search, this calculus explodes a given sequent into its elementary structural sequents—the topmost sequents in a derivation thus constructed—which do not contain any logical constants. Some of the properties exhibited by the collection of elementary structural sequents in relation to the sequent they are derived from, uniqueness and unique representation of formula occurrences, will be discussed in detail. Based on these properties it is suggested that a collection of elementary structural sequents constitutes the purely structural representation of the sequent from which it is obtained.


Sequent calculus Structural reasoning Cut rule Locality 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Supported by the DFG Project “Paul Hertz and his foundations of structural proof theory” (DFG AR 1010/2-1).


  1. 1.
    Arndt, M., Eight inference rules for implication, Studia Logica, pp. 28, 2018
  2. 2.
    Avron, A., Tonk—a full mathematical solution, in A. Biletzki, (eds.), Hues of Philosophy, College Publications, 2010, pp. 17–42.Google Scholar
  3. 3.
    Došen, K., and Z. Petrić, Graphs of plural cuts, Theoretical Computer Science 484:41–55, 2013.CrossRefGoogle Scholar
  4. 4.
    Gentzen, G., Über die Existenz unabhängiger Axiomensysteme zu unendlichen Satzsystemen, Mathematische Annalen 107:329–350, 1933.CrossRefGoogle Scholar
  5. 5.
    Gentzen, G., Untersuchungen über das logische Schließen. I–II, Mathematische Zeitschrift 39:176–210, 405–431, 1935.Google Scholar
  6. 6.
    Gentzen, G., Collected Papers of Gerhard Gentzen, volume 55 of Studies in Logic and the Foundations of Mathematics, North-Holland, 1969.Google Scholar
  7. 7.
    Girard, J.-Y., Linear logic, Theoretical Computer Science 50:1–102, 1987.CrossRefGoogle Scholar
  8. 8.
    Girard, J.-Y., Transcendental syntax i: deterministic case, Mathematical Structures in Computer Science 27(5):827–849, 2017.CrossRefGoogle Scholar
  9. 9.
    Hertz, P., Über Axiomensysteme für beliebige Satzsysteme. I. Teil. Sätze ersten Grades, Mathematische Annalen 87:246–269, 1922.CrossRefGoogle Scholar
  10. 10.
    Hertz, P., Über Axiomensysteme für beliebige Satzsysteme. II. Teil. Sätze höheren Grades, Mathematische Annalen 89:76–100, 1923.CrossRefGoogle Scholar
  11. 11.
    Hertz, P., Über Axiomensysteme für beliebige Satzsysteme, Mathematische Annalen 101:457–514, 1929.CrossRefGoogle Scholar
  12. 12.
    Hertz, P., Sprache und Logik, Erkenntnis 7(1):309–324, 1937.Google Scholar
  13. 13.
    Hughes, D. J. D., Proofs without syntax, Annals of Mathematics 164:1065–1076, 2006.CrossRefGoogle Scholar
  14. 14.
    Prawitz, D., Proofs and the meaning and completeness of the logical constants, in J. Hintikka, I. Niiniluoto and E. Saarinen (eds.), Essays on Mathematical and Philosophical Logic, Reidel, 1979, pp. 25–40.CrossRefGoogle Scholar
  15. 15.
    Schroeder-Heister, P., Uniform proof-theoretic semantics for logical constants (abstract), Journal of Symbolic Logic 56:1142, 1991.Google Scholar
  16. 16.
    Schroeder-Heister, P., Rules of definitional reflection, in Proceedings of the 8th Annual IEEE Symposium on Logic in Computer Science, 1993, pp. 222–232.Google Scholar
  17. 17.
    Schroeder-Heister, P., Generalized definitional reflection and the inversion principle, Logica Universalis 1:355–376, 2007.CrossRefGoogle Scholar
  18. 18.
    von Plato, J., Gentzen’s proof systems: byproducts in a work of genius, Bulletin of Symbolic Logic 18(3):313–367, 2012.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Wilhelm-Schickard-InstitutUniversität TübingenTübingenGermany

Personalised recommendations