Extended Contact Algebras and Internal Connectedness

  • Tatyana IvanovaEmail author


The notion of contact algebra is one of the main tools in the region-based theory of space. It is an extension of Boolean algebra with an additional relation C, called contact. Standard models of contact algebras are topological and are the contact algebras of regular closed sets in a given topological space. In such a contact algebra we add the predicate of internal connectedness with the following meaning—a regular closed set is internally connected if and only if its interior is a connected topological space in the subspace topology. We add also a ternary relation \(\vdash \) meaning that the intersection of the first two arguments is included in the third. In this paper the extension of a Boolean algebra with \(\vdash \), contact and internal connectedness, satisfying certain axioms, is called an extended contact algebra. We prove a representation theorem for extended contact algebras and thus obtain an axiomatization of the theory, consisting of the universal formulas, true in all topological contact algebras with added relations of internal connectedness and \(\vdash \).


Mereotopology Point-free theory of space Contact algebras Extended contact algebras Internal connectedness Topological representation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    Aiello, M., I. Pratt-Hartmann, and J. van Benthem (eds.), Handbook of Spatial Logics, Springer, 2007.Google Scholar
  2. 2.
    Balbes, R., and P. Dwinger, Distributive Lattices. University of Missouri Press, Columbia, 1974.Google Scholar
  3. 3.
    Balbiani, P. (ed.), Special Issue on Spatial Reasoning, J. Appl. Non-Classical Logics 12:3–4, 2002.Google Scholar
  4. 4.
    Balbiani, P., T. Tinchev, and D. Vakarelov, Modal Logics for Region-based Theory of Space. Fundamenta Informaticae, Special Issue: Topics in Logic, Philosophy and Foundation of Mathematics and Computer Science in Recognition of Professor Andrzej Grzegorczyk, 81(1-3):29–82, 2007.Google Scholar
  5. 5.
    Bennett, B., and I. Düntsch, Axioms, Algebras and Topology, in M. Aiello, I. Pratt, and J. van Benthem, (eds.), Handbook of Spatial Logics, Springer, 2007, pp. 99–160.Google Scholar
  6. 6.
    Cohn, A., and S. Hazarika, Qualitative spatial representation and reasoning: An overview. Fuandamenta informaticae 46:1–20, 2001.Google Scholar
  7. 7.
    Cohn, A., and J. Renz, Qualitative spatial representation and reasoning, in F. van Hermelen, V. Lifschitz, and B. Porter, (eds.), Handbook of Knowledge Representation, Elsevier, 2008, pp. 551–596.Google Scholar
  8. 8.
    de Laguna, T., Point, line and surface as sets of solids, J. Philos 19:449–461, 1922.CrossRefGoogle Scholar
  9. 9.
    de Vries, H., Compact spaces and compactifications, Van Gorcum, 1962.Google Scholar
  10. 10.
    Dimov, G., and D. Vakarelov, Contact algebras and region-based theory of space: A proximity approach I, Fundamenta Informaticae 74(2-3):209–249, 2006.Google Scholar
  11. 11.
    Düntsch, I. (ed.), Special issue on Qualitative Spatial Reasoning, Fundam. Inform., 46, 2001.Google Scholar
  12. 12.
    Düntsch, I., and D. Vakarelov, Region-based theory of discrete spaces: A proximity approach, in M. Nadif, A. Napoli, E. SanJuan, and A. Sigayret, (eds.), Proceedings of Fourth International Conference Journées de l’informatique Messine, Metz, France, 2003, pp. 123–129. Journal version in: Annals of Mathematics and Artificial Intelligence 49(1-4):5–14, 2007.Google Scholar
  13. 13.
    Düntsch, I., and M. Winter, A representation theorem for Boolean contact algebras, Theoretical Computer Science (B) 347:498–512, 2005.CrossRefGoogle Scholar
  14. 14.
    Egenhofer, M., and R. Franzosa, Point-set topological spatial relations, Int. J. Geogr. Inform. Systems 5:161–174, 1991.Google Scholar
  15. 15.
    Engelking, R., General Topology, Polish Scientiphic Publishers, 1977.Google Scholar
  16. 16.
    Hahmann, T., and M. Gruninger, Region-based theories of space: mereotopology and beyond, in S. Hazarika, (ed.), Qualitative Spatio-Temporal Representation and Reasoning: Trends and Future Directions, IGI Publishing, 2012, pp. 1–62.Google Scholar
  17. 17.
    Hazarika, S. M. (ed.), Qualitative Spatio-Temporal Representation and Reasoning: Trends and Future Directions, IGI Global; 1st ed. (May 31, 2012).Google Scholar
  18. 18.
    Kontchakov, R., I. Pratt-Hartmann, F. Wolter, and M. Zakharyaschev, Topology, connectedness, and modal logic, in C. Areces and R. Goldblatt, (eds.), Advances in Modal Logic, volume 7, College Publications, London, 2008, pp. 151–176.Google Scholar
  19. 19.
    Kontchakov, R., I. Pratt-Hartmann, F. Wolter, and M. Zakharyaschev, On the computational complexity of spatial logics with connectedness constraints, in I. Cervesato, H. Veith and A. Voronkov, (eds.), Proceedings of LPAR, 2008, Doha, Qatar, November, 22–27, 2008, LNAI, vol. 5330, Springer, 2008, pp. 574–589.Google Scholar
  20. 20.
    Kontchakov, R., I. Pratt-Hartmann, F. Wolter, and M. Zakharyaschev, Spatial logics with connectedness predicates, Logical Methods in Computer Science 6(3:7), 2010.Google Scholar
  21. 21.
    Kontchakov, R., I. Pratt-Hartmann, and M. Zakharyaschev, Topological logics over Euclidean spaces, in Proceedings of Topology, Algebra and Categories in Logic, TACL 2009, Amsterdam, July, 7–11, 2009.Google Scholar
  22. 22.
    Kontchakov, R., I. Pratt-Hartmann, and M. Zakharyaschev, Interpreting Topological Logics over Euclidean Spaces, in F. Lin, U. Sattler and M. Truszczynski, (eds.), Proceedings of KR, Toronto, Canada, May, 9–13, AAAI Press, 2010, pp. 534–544.Google Scholar
  23. 23.
    Pratt-Hartmann, I., Empiricism and Rationalism in Region-based Theories of Space, Fundamenta Informaticae 45:159–186, 2001.Google Scholar
  24. 24.
    Pratt-Hartmann, I., A topological constraint language with component counting, J. of Applied Nonclassical Logics 12:441–467, 2002.CrossRefGoogle Scholar
  25. 25.
    Pratt-Hartmann, I., First-order region-based theories of space, in M. Aiello, I. Pratt-Hartmann, and J. van Benthem, (eds.), Logic of Space, Springer, 2007.Google Scholar
  26. 26.
    Randell, D. A., Z. Cui, and A. G. Cohn, A spatial logic based on regions and connection, in B. Nebel, W. Swartout, and C. Rich, (eds.), Proceedings of the 3rd International Conference Knowledge Representation and Reasoning, Morgan Kaufmann, Los Allos, CA, 1992, pp. 165–176.Google Scholar
  27. 27.
    Shchepin, E., Real-valued functions and spaces close to normal, Siberian mathematical journal 13:820–830, 1972.CrossRefGoogle Scholar
  28. 28.
    Stell, J., Boolean connection algebras: A new approach to the Region Connection Calculus, Artif. Intell. 122:111–136, 2000.CrossRefGoogle Scholar
  29. 29.
    Stone, M., Topological representations of distributive lattices and Brouwerian logics. Časopis Pěst. Mat. 67:1–25, 1937.Google Scholar
  30. 30.
    Thron, W. J., Proximity structures and grills, Math. Ann. 206:35–62, 1973.CrossRefGoogle Scholar
  31. 31.
    Tinchev, T., and D. Vakarelov, Logics of Space with Connectedness Predicates: Complete axiomatizations, in L. Beklemishev, V. Goranko, and V. Shehtman, (eds.), Proceedings of the conference 8th Advances in Modal Logic, Advances in Modal Logic, 8, College Publications, London, 2010, pp. 409–427.Google Scholar
  32. 32.
    Vakarelov, D., Region-based theory of space: Algebras of regions, representation theory and logics, in D. Gabbay et al. (eds.), Mathematical Problems from Applied Logics. New Logics for the XXIst Century. II. Springer, 2007, pp. 267–348.Google Scholar
  33. 33.
    Vakarelov, D., Extended mereotopology based on sequent algebras, in Proceedings of Workshop dedicated to the 65 anniversary of Luis Farinas del Cerro, 3–4 March, Toulouse, France, 2016.Google Scholar
  34. 34.
    Vakarelov, D., G. Dimov, I. Düntsch, and B. Bennett, A proximity approach to some region based theory of space. Journal of applied non-classical logics 12(3-4):527–559, 2002.CrossRefGoogle Scholar
  35. 35.
    Vakarelov, D., I. Düntsch, and B. Bennett, A note on proximity spaces and connection based mereology, in C. Welty, and B. Smith, (eds.), Proceedings of the 2nd International Conference on Formal Ontology in Information Systems (FOIS’01), ACM, 2001, pp. 139–150.Google Scholar
  36. 36.
    Whitehead, A. N., Process and Reality, MacMillan, New York, 1929.Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institute of Mathematics and InformaticsBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations