Advertisement

When is a Schema Not a Schema? On a Remark by Suszko

  • Lloyd HumberstoneEmail author
  • Allen Hazen
Article
  • 17 Downloads

Abstract

A 1971 paper by Roman Suszko, ‘Identity Connective and Modality’, claimed that a certain identity-free schema expressed the condition that there are at most two objects in the domain. Section 1 here gives that schema and enough of the background to this claim to explain Suszko’s own interest in it and related conditions—via non-Fregean logic, in which the objects in question are situations and the aim is to refrain from imposing this condition. Section 3 shows that the claim is false, and suggests a diagnosis as to why it might have been made, in terms of quantifier scope distinctions as they bear on schematic formulations. In between, Section 2 discusses an issue brought up by this discussion but not involving the mistaken claim itself, and shows that Suszko was familiar with two different ways (using identity) to set an upper or lower finite bound to the domain—a contrast which some contemporary readers may associate with David Lewis (for reasons that will be explained in that section).

Keywords

Suszko Schemata Identity Non-Fregean logic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Adamowicz, Z., and P. Zbierski, Logic of Mathematics: A Modern Course of Classical Logic, Wiley, New York 1997.CrossRefGoogle Scholar
  2. 2.
    Avigad, J., and R. Zach, The epsilon calculus, in E. N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Summer 2016 Edition). https://plato.stanford.edu/archives/sum2016/entries/epsilon-calculus/
  3. 3.
    Bigelow, J., The Reality of Numbers, Oxford University Press, Oxford 1988.Google Scholar
  4. 4.
    Church, A., Introduction to Mathematical Logic (Vol. I), Princeton University Press, Princeton NJ 1956.Google Scholar
  5. 5.
    Corcoran, J., Schemata: the concept of schema in the history of logic, Bulletin of Symbolic Logic 12:219–240, 2006.CrossRefGoogle Scholar
  6. 6.
    Forbes, G., Logic, logical form, and the open future, Philosophical Perspectives, Vol. 10: Metaphysics 73–92, 1996.Google Scholar
  7. 7.
    Gillon, B., Peirce’s challenge to material implication as a modal of “If”, Analysis 55:280–282, 1995.CrossRefGoogle Scholar
  8. 8.
    Goldblatt, R., Quantifiers, Propositions and Identity: Admissible Semantics for Quantified Modal and Substructural Logics, Cambridge University Press, Cambridge 2011.CrossRefGoogle Scholar
  9. 9.
    Grzegorczyk, A., The systems of Leśniewski in relation to contemporary logical research, Studia Logica 3:77–95, 1955.CrossRefGoogle Scholar
  10. 10.
    Hailperin, T., An incorrect theorem, Journal of Symbolic Logic 30:27, 1968.CrossRefGoogle Scholar
  11. 11.
    Hugly, P., and C. Sayward, Bound variables and schematic letters, Logique et Analyse 24:425–429, 1981.Google Scholar
  12. 12.
    Humberstone, L., On a strange remark attributed to Gödel, History and Philosophy of Logic 24:39–44, 2003.CrossRefGoogle Scholar
  13. 13.
    Humberstone, L., The Connectives, MIT Press, Cambridge, MA 2011.CrossRefGoogle Scholar
  14. 14.
    Humberstone, L., Aggregation and idempotence, Review of Symbolic Logic 6:680–708, 2013.CrossRefGoogle Scholar
  15. 15.
    Humberstone, L., Philosophical Applications of Modal Logic, College Publications, London 2016.Google Scholar
  16. 16.
    Komori, Y., Logics without Craig’s interpolation property, Proc. Japan Acad. 54A:46–48, 1978.CrossRefGoogle Scholar
  17. 17.
    Oliver, A., The matter of form: logic’s beginnings, in J. Lear, and A. Oliver (eds.), The Force of Argument: Essays in Honor of Timothy Smiley, Routledge, New York, NY 2010, pp. 165–185.Google Scholar
  18. 18.
    Read, S., Conditionals are not truth-functional: an argument from Peirce, Analysis 52:5–12, 1992.CrossRefGoogle Scholar
  19. 19.
    Shramko, Y., and H. Wansing, The slingshot argument and sentential identity, Studia Logica 91:429–455, 2009.CrossRefGoogle Scholar
  20. 20.
    Słupecki, J., St. Leśniewski’s protothetics, Studia Logica 1:46–111, 1953.Google Scholar
  21. 21.
    Smiley, T. J., The schematic fallacy, Proceedings of the Aristotelian Society 83:1–17, 1982.CrossRefGoogle Scholar
  22. 22.
    Suszko, R., Concerning the method of logical schemes, the notion of logical calculus and the role of consequence relations, Studia Logica 11:185–214, 1961.CrossRefGoogle Scholar
  23. 23.
    Suszko, R., Sentential variables versus arbitrary sentential constants, Prace z Logiki 6:85–88, 1971.Google Scholar
  24. 24.
    Suszko, R., Identity connective and modality, Studia Logica 27:7–39, 1971.CrossRefGoogle Scholar
  25. 25.
    Wajsberg, M., Investigations of functional calculus for finite domain of individuals, in S. J. Surma (ed.), Mordechaj Wajsberg: Logical Works, Polish Academy of Sciences, Institute of Philosophy and Sociology, Wrocław 1977. (German original of this paper publ. 1933.), pp. 40–49.Google Scholar
  26. 26.
    Wehmeier, K. F., Wittgensteinian predicate logic, Notre Dame Journal of Formal Logic 45:1–11, 2004.CrossRefGoogle Scholar
  27. 27.
    Wehmeier, K. F., Wittgensteinian tableaux, identity, and co-denotation, Erkenntnis 69:363–376, 2008.CrossRefGoogle Scholar
  28. 28.
    Wehmeier, K. F., How to live without identity—and why, Australasian Journal of Philosophy 90:761–777, 2012.CrossRefGoogle Scholar
  29. 29.
    Wójcicki, R., R. Suszko’s situational semantics, Studia Logica 43:323–340, 1984.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of PhilosophyMonash UniversityVictoriaAustralia
  2. 2.Department of PhilosophyUniversity of AlbertaEdmontonCanada

Personalised recommendations