Studia Logica

, Volume 107, Issue 2, pp 283–312 | Cite as

A Deterministic Weakening of Belnap–Dunn Logic

  • Minghui Ma
  • Yuanlei LinEmail author


A deterministic weakening \(\mathsf {DW}\) of the Belnap–Dunn four-valued logic \(\mathsf {BD}\) is introduced to formalize the acceptance and rejection of a proposition at a state in a linearly ordered informational frame with persistent valuations. The logic \(\mathsf {DW}\) is formalized as a sequent calculus. The completeness and decidability of \(\mathsf {DW}\) with respect to relational semantics are shown in terms of normal forms. From an algebraic perspective, the class of all algebras for \(\mathsf {DW}\) is described, and found to be a subvariety of Berman’s variety \(\mathcal {K}_{1,2}\). Every linearly ordered frame is logically equivalent to its dual algebra. It is proved that \(\mathsf {DW}\) is the logic of a nine-element distributive lattice with a negation. Moreover, \(\mathsf {BD}\) is embedded into \(\mathsf {DW}\) by Glivenko’s double-negation translation.


Belnap–Dunn logic Relational semantics Ockham algebras 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albuquerque, H., A. Přenosil, and U. Rivieccio, An algebraic view of super-Belnap logics, Studia Logica 2017.
  2. 2.
    Anderson, A.R., and N.D. Belnap, et al., Entailment: The Logic of Relevance and Necessity, vol.1, Princeton University Press, Princeton, 1975.Google Scholar
  3. 3.
    Balbes, R., and P. Dwinger, Distributive Lattices, University of Missouri Press, Columbia, 1974.Google Scholar
  4. 4.
    Belnap, N., A useful four-valued logic, in J.M. Dunn and G. Epstein (eds.), Modern Uses of Multiple-Valued Logic, 1977, pp. 5–37.Google Scholar
  5. 5.
    Belnap, N., How a computer should think, in G. Ryle (ed.), Contemporary Aspects of Philosophy, 1977, pp. 30–55.Google Scholar
  6. 6.
    Berman, J., Distributive lattices with an additional unary operation, Aequationes Mathematicae 16: 165–171, 1977.CrossRefGoogle Scholar
  7. 7.
    Blyth, T.S., A.S. Noor, and J.C. Varlet, Ockham algebras with de Morgan skeletons, Journal of Algebra 117: 165–178, 1988.CrossRefGoogle Scholar
  8. 8.
    Blyth, T.S., and J.C. Varlet, Ockham Algebras, Oxford Science Publications, 1994.Google Scholar
  9. 9.
    Chagrov, A., and M. Zakharyaschev, Modal Logic, Oxford Science Publications, 1997.Google Scholar
  10. 10.
    Czelakowski, J., Protoalgebraic Logics, Kluwer Academic Publishers, Dordrecht, 2001.CrossRefGoogle Scholar
  11. 11.
    Dunn, M., The Algebra of Intensional Logics, Ph.D. Dissertation, University of Pittsburg, 1966.Google Scholar
  12. 12.
    Dunn, M., The effective equivalence of certain propositions about De Morgan lattices, The Journal of Symbolic Logic 32: 433–434, 1967.Google Scholar
  13. 13.
    Dunn, M., A Kripke-style semantics for first-degree relevant implications (abstract), The Journal of Symbolic Logic 36: 362–363, 1971.Google Scholar
  14. 14.
    Dunn, M., Intuitive semantics for first-degree entailments and coupled trees, Philosophical Studies 29: 149–168, 1976.CrossRefGoogle Scholar
  15. 15.
    Dunn, M., Relevance logic and entaiment, in D. Gabbay and F. Guenthner (eds.), Handbook of Philosophical Logic Volume III: Alternatives in Classical Logic, Springer Science+Business Media, Dordrecht, 1986, pp. 117–224.CrossRefGoogle Scholar
  16. 16.
    Dunn, M., A comparative study of various model-theoretic treatments of negation: a history of formal negation, in D. M. Gabbay and H. Wansing (eds.), What is Negation? Kluwer Academic Publishers, 1999, pp. 23–51.Google Scholar
  17. 17.
    Dunn, M., Partiality and its dual, Studia Logica 65: 5–40, 2000.CrossRefGoogle Scholar
  18. 18.
    Fitting, M., Logic programming on a topological bilattice, Fundamenta Informatica 11: 209–218, 1988.Google Scholar
  19. 19.
    Font, J.M., Belnap’s four-valued logic and De Morgan lattices, Logic Journal of the IGPL 5: 413–440, 1997.CrossRefGoogle Scholar
  20. 20.
    Font, J.M., Abstract Algebraic Logic – An Introductory Textbook, Colledge Publications, London, 2016.Google Scholar
  21. 21.
    Ginsberg, M.L., Multivalued logics: A uniform approach to inference in artificial intelligence, Computational Intelligence 4: 265–316, 1988.CrossRefGoogle Scholar
  22. 22.
    Jansana, R., Selfextensional logics with a conjunction, Studia Logica 84: 63–104, 2006.CrossRefGoogle Scholar
  23. 23.
    Kalman, J.A., Lattices with involution, Transactions of the American Mathematical Society 87: 485–491, 1958.CrossRefGoogle Scholar
  24. 24.
    Pietz, A., and U. Rivieccio, Nothing but the truth, Journal of Philosophical Logic 42: 125–135, 2013.CrossRefGoogle Scholar
  25. 25.
    Rasiowa, H., An Algebraic Approach to Non-classical Logics, North-Holland Publishing Company, Amsterdam, 1974.Google Scholar
  26. 26.
    Rivieccio, U., An infinity of super-Belnap logics, Journal of Applied Non-Classical Logics 22: 319–335, 2012.CrossRefGoogle Scholar
  27. 27.
    Sankappanavar, H.P., Distributive lattices with a dual endomorphism, Zeitschrift für mathematische Logik und Grundlagen der Mathematik 31: 385–392, 1985.CrossRefGoogle Scholar
  28. 28.
    Sankappanavar, H.P., Semi-De Morgan lattices, The Journal of Symbolic Logic 52(3): 712–724, 1987.CrossRefGoogle Scholar
  29. 29.
    Urquhart, A., Lattices with a dual homomorphic operation, Studia Logica 38: 201–209, 1979.CrossRefGoogle Scholar
  30. 30.
    Urquhart, A., Lattices with a dual homomorphic operation II, Studia Logica 40: 391–404, 1981.CrossRefGoogle Scholar
  31. 31.
    Wójcicki, R., Theory of Logical Calucli: Basic Theory of Consequence Operations, Reidel, Dordrecht, 1988.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Logic and CognitionSun Yat-sen UniversityGuangzhouChina

Personalised recommendations