Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Theoretical study of the complexes of light-gated corannulene tweezers with fullerene

Abstract

The aim of this paper is the study of the structure and stability of the complexes of azobenzene derivatives containing corannulenes fragments with fullerene by using the QTAIM analysis of the electron density obtained from DFT calculations. The IQA formalism was also employed to analyse the main effects contributing to the dimers stabilization. It can be concluded from the obtained results that although the cavity inside the host is slightly smaller for the F-substituted molecule, the electrostatic contribution to the interaction energy is less repulsive for this molecule. The interaction energy in the dimers increases upon F substitution and it also increases for the anionic form. This stabilization is related to the electrostatic components of the energy because of the presence of higher atomic charges in the dimers with fluorine atoms. On the contrary, it has not been found a relation between the magnitude of the non-classical interactions and the different stabilities of the dimers. The signals in the UV spectra of the azobenzene derivatives do not appear in the dimers, so allowing to if the fullerene molecule is inside the azobenzene molecule.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. 1.

    Siewertsen R, Neumann H, Buchheim-Stehn B, Herges R, Näther C, Renth F, Temps F (2009) Highly efficient reversible Z-E photoisomerization of a bridged azobenzene with visible light through resolved S(1)(n pi*) absorption bands. J Am Chem Soc 131:15594–15595. https://doi.org/10.1021/ja906547d

  2. 2.

    Merino E, Ribagorda M (2012) Control over molecular motion using the cis-trans photoisomerization of the azo group. Beilstein J Org Chem 8:1071–1090. https://doi.org/10.3762/bjoc.8.119

  3. 3.

    Bandara HMD, Burdette SC (2012) Photoisomerization in different classes of azobenzene. Chem Soc Rev 41:1809–1825

  4. 4.

    Ankenbruck N, Courtney T, Naro Y, Deiters A (2018) Optochemical control of biological processes in cells and animals. Angew Chem Int Ed Eng 57:2768–2798. https://doi.org/10.1002/anie.201700171

  5. 5.

    Cabré G, Garrido-Charles A, Moreno M, Bosch M, Porta-de-la-Riva M, Krieg M, Gascón-Moya M, Camarero N, Gelabert R, Lluch JM, Busqué F, Hernando J, Gorostiza P, Alibés R (2019) Rationally designed azobenzene photoswitches for efficient two-photon neuronal excitation. Nat Commun:10. https://doi.org/10.1038/s41467-019-08796-9

  6. 6.

    Wegener M, Hansen MJ, Driessen AJM, Szymanski W, Feringa BL (2017) Photocontrol of antibacterial activity: Shifting from UV to red light activation. J Am Chem Soc 139:17979–17986. https://doi.org/10.1021/jacs.7b09281

  7. 7.

    Barbero H, Ferrero S, Álvarez-Miguel L, Gómez-Iglesias P, Miguel D, Álvarez CM (2016) Affinity modulation of photoresponsive hosts for fullerenes: light-gated corannulene tweezers. Chem Commun 52:12964–12967. https://doi.org/10.1039/c6cc06445k

  8. 8.

    Mizyed S, Georghiou PE, Bancu M et al (2001) Embracing C60 with multiarmed geodesic partners. J Am Chem Soc 123:12770–12774. https://doi.org/10.1021/ja016761z

  9. 9.

    Sygula A, Fronczek FR, Sygula R et al (2007) A double concave hydrocarbon buckycatcher. J Am Chem Soc 129:3842–3843. https://doi.org/10.1021/ja070616p

  10. 10.

    Le VH, Yanney M, McGuire M et al (2014) Thermodynamics of host–guest interactions between fullerenes and a Buckycatcher. J Phys Chem B 118:11956–11964. https://doi.org/10.1021/jp5087152

  11. 11.

    Yanney M, Fronczek FR, Sygula A (2015) A 2:1 receptor/C 60 complex as a Nanosized universal joint. Angew Chem Int Ed 54:11153–11156. https://doi.org/10.1002/anie.201505327

  12. 12.

    Álvarez CM, Aullón G, Barbero H et al (2015) Assembling nonplanar Polyaromatic units by click chemistry. Study of Multicorannulene systems as host for fullerenes. Org Lett 17:2578–2581. https://doi.org/10.1021/acs.orglett.5b01161

  13. 13.

    Yanney M, Sygula A (2013) Tridental molecular clip with corannulene pincers: is three better than two? Tetrahedron Lett 54:2604–2607. https://doi.org/10.1016/j.tetlet.2013.03.009

  14. 14.

    Álvarez CM, Barbero H, Ferrero S, Miguel D (2016) Synergistic effect of Tetraaryl Porphyrins containing Corannulene and other polycyclic aromatic fragments as hosts for fullerenes. Impact of C 60 in a statistically distributed mixture of Atropisomers. J Organomet Chem 81:6081–6086. https://doi.org/10.1021/acs.joc.6b00454

  15. 15.

    Stuparu MC (2012) Synthesis and properties of star polymers with a C5-symmetric bowl-shaped aromatic core. J Polym Sci Part A Polym Chem 50:2641–2649. https://doi.org/10.1002/pola.26038

  16. 16.

    Wu YT, Bandera D, Maag R et al (2008) Multiethynyl corannulenes: synthesis, structure, and properties. J Am Chem Soc 130:10729–10739. https://doi.org/10.1021/ja802334n

  17. 17.

    Kawase T, Kurata H (2006) Ball-, bowl-, and belt-shaped conjugated systems and their Complexing abilities: exploration of the concave−convex π−π interaction. Chem Rev 106:5250–5273. https://doi.org/10.1021/cr0509657

  18. 18.

    Tsefrikas VM, Scott LT (2006) Geodesic Polyarenes by flash vacuum pyrolysis. Chem Rev 106:4868–4884. https://doi.org/10.1021/cr050553y

  19. 19.

    Pérez EM, Martín N (2008) Curves ahead: molecular receptors for fullerenes based on concave–convex complementarity. Chem Soc Rev 37:1512. https://doi.org/10.1039/b802589b

  20. 20.

    Hardouin-Lerouge M, Hudhomme P, Sallé M (2011) Molecular clips and tweezers hosting neutral guests. Chem Soc Rev 40:30–43. https://doi.org/10.1039/B915145C

  21. 21.

    Waller MP, Kruse H, Mück-Lichtenfeld C, Grimme S (2012) Investigating inclusion complexes using quantum chemical methods. Chem Soc Rev 41:3119. https://doi.org/10.1039/c2cs15244d

  22. 22.

    Kanagaraj K, Lin K, Wu W et al (2017) Chiral Buckybowl molecules. Symmetry (Basel) 9:174. https://doi.org/10.3390/sym9090174

  23. 23.

    Josa D, Rodríguez-Otero J, Cabaleiro-Lago EM, Santos LA, Ramalho TC (2014) Substituted corannulenes and sumanenes as fullerene receptors . A dispersion-corrected density functional theory study. J Phys Chem A 118:9521–9528. https://doi.org/10.1021/jp5061107

  24. 24.

    Denis PA (2013) Theoretical characterization of existing and new fullerene receptors. RSC Adv 3:25296–25305. https://doi.org/10.1039/c3ra45478a

  25. 25.

    Bader RFW (1990) Atoms in molecules : a quantum theory. Oxford University Press, Oxford

  26. 26.

    Francisco E, Pendás AM, Blanco MA (2006) A molecular energy decomposition scheme for atoms in molecules. J Chem Theory Comput 2:90–102. https://doi.org/10.1021/ct0502209

  27. 27.

    Blanco MA, Pendás AM, Francisco E (2005) Interacting quantum atoms: a correlated energy decomposition scheme based on the quantum theory of atoms in molecules. J Chem Theory Comput 1:1096–1109. https://doi.org/10.1021/ct0501093

  28. 28.

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz J V., Cioslowski J, Fox DJ (2009) Gaussian09. Gaussian 09

  29. 29.

    Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566. https://doi.org/10.1080/00268977000101561

  30. 30.

    Keith TA. (2016) AIMAll (version 17.01.25). TK gristmill Softw Overl Park KS, 2016 (available aim.tkgristmill.com)

  31. 31.

    Mandado M, Hermida-Ramón JM (2011) Electron density based partitioning scheme of interaction energies. J Chem Theory Comput 7(2011):633–641. https://doi.org/10.1021/ct100730a

  32. 32.

    Mück-Lichtenfeld C, Grimme S, Kobryn L, Sygula A (2010) Inclusion complexes of buckycatcher with C60 and C70. Phys Chem Chem Phys 12:7091–7097. https://doi.org/10.1039/b925849c

  33. 33.

    Cabaleiro-Lago EM, Rodríguez-Otero J, Carrazana-García JA (2017) A theoretical study of complexes between fullerenes and concave receptors with interest in photovoltaics. Phys Chem Chem Phys 19:26787–26798. https://doi.org/10.1039/c7cp03665e

  34. 34.

    Josa D, Rodríguez-Otero J, Cabaleiro-Lago EM (2015) Fullerene recognition with molecular tweezers made up of efficient buckybowls: a dispersion-corrected DFT study. Phys Chem Chem Phys 17:13206–13214. https://doi.org/10.1039/c5cp00407a

  35. 35.

    Ambrosetti A, Alfè D, Distasio RA, Tkatchenko A (2014) Hard numbers for large molecules: toward exact energetics for supramolecular systems. J Phys Chem Lett 5:849–855. https://doi.org/10.1021/jz402663k

  36. 36.

    Bléger D, Schwarz J, Brouwer AM, Hecht S (2012) O -fluoroazobenzenes as readily synthesized photoswitches offering nearly quantitative two-way isomerization with visible light. J Am Chem Soc 134:20597–20600. https://doi.org/10.1021/ja310323y

  37. 37.

    Hammerich M, Schütt C, Stähler C, Lentes P, Röhricht F, Höppner R, Herges R (2016) Heterodiazocines: synthesis and photochromic properties, trans to Cis switching within the bio-optical window. J Am Chem Soc 138:13111–13114. https://doi.org/10.1021/jacs.6b05846

  38. 38.

    Dong M, Babalhavaeji A, Collins CV, Jarrah K, Sadovski O, Dai Q, Woolley GA (2017) Near-infrared Photoswitching of Azobenzenes under physiological conditions. J Am Chem Soc 139:13483–13486. https://doi.org/10.1021/jacs.7b06471

  39. 39.

    Ambrosetti A, Alfè D, DiStasio RA, Tkatchenko A (2014) Hard Numbers for Large Molecules: Toward Exact Energetics for Supramolecular Systems. The Journal of Physical Chemistry Letters 5(5):849–855

Download references

Acknowledgements

We thank Dr. Mandado for calculations of interaction energies with the method by Mandado and Hermida-Ramón.

Funding

We thank Xunta de Galicia for financial support through ED431C 2019/24.

Author information

Correspondence to Ana M. Graña.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hermida-Ramón, J.M., Graña, A.M. Theoretical study of the complexes of light-gated corannulene tweezers with fullerene. Struct Chem (2020). https://doi.org/10.1007/s11224-020-01502-2

Download citation

Keywords

  • Azobenzenes
  • Fullerene
  • Molecular tweezers
  • QTAIM
  • Electron density
  • IQA