Density functional theory for investigation of optical and spectroscopic properties of zinc-quinonoid complexes as semiconductor materials

  • A. F. Al-HossainyEmail author
  • M. Sh. ZorombaEmail author
  • O. A. El-Gammal
  • Farid I. El-Dossoki
Original Research


Three Zn(II) complexes of a new organic compound [(E)-4-methyl-N1-((E)-4-methyl-6-(p-tolylimino) cyclohex-3-en-1-ylidene)-N2-(p-tolyl) benzene-1, 2-diamine] (HMBD) were prepared and characterized by various techniques, including Fourier transform infrared (FTIR), UV–visible measurements, 1H-NMR, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The data revealed that the HMBD ligand has an ONS tridentate-forming structure, while the complex of HMBD with zinc metal has a distorted octahedral structure, providing sp3d2 hybridization type. The geometry, HOMO, LUMO, polarizability, and other energetic parameters were evaluated by density functional theory (DFT) on Materials Studio package. Optical band gap (Eg) was estimated by DFT theory and optical properties for [Zn(MBD)(Cl)(H2O)2].2H2O (1), [Zn(MBD)](NO3)2H2O].2H2O (2), and [Zn(MBD)(CH3COO)(H2O)].3H2O (3) thin films as well, revealing that [Zn(MBD)(CH3COO)(H2O)].3H2O (3) thin film has the smallest energy gap and can be considered a highly efficient photovoltaic material. The resulting band gap energy values from both methods were found to be close to each other. Thin films of the ligand and zinc complexes were successfully fabricated by spin coating method. The optical constants, refractive index (n), and the absorption index (k) over the spectral range of the thin films were determined.


Zinc-quinonoid complexes Thin film Optical properties Semiconductor materials Density functional theory 


Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflicts of interest.

Supplementary material

11224_2019_1289_MOESM1_ESM.xlsx (12 kb)
ESM 1 (XLSX 12 kb)
11224_2019_1289_MOESM2_ESM.xlsx (29 kb)
ESM 2 (XLSX 29 kb)
11224_2019_1289_MOESM3_ESM.docx (2.1 mb)
ESM 3 (DOCX 2121 kb)


  1. 1.
    Martinez MA, Herrero J, Gutierrez MT (1997). Sol Energy Mater Sol Cells 45(1):75–86CrossRefGoogle Scholar
  2. 2.
    Fardousi M, Hossain MF, Islam MS, Ruslan SR (2013). J Mod Sci Techn 1(1):126–134Google Scholar
  3. 3.
    Sankar G, Claude A, Sathya S, Poiyamozh A (2013). Adv Appl Sci Res 4(6):13–20Google Scholar
  4. 4.
    Lennon C, Kodama R, Chang Y, Sivanathan S, Deshpande M (2008). J Electron Mater 37:9CrossRefGoogle Scholar
  5. 5.
    Park YR, Jung D, Kim KC, Suh SJ, Park TS, Kim YS (2009). J Electron 23:2–4Google Scholar
  6. 6.
    Patil PS (1999). Mater Chem Phys 59(3):85–198CrossRefGoogle Scholar
  7. 7.
    Krunks K, Bijakina O, Mikli V, Varema T, Mellikov E (1999). Phys Scr T79:209CrossRefGoogle Scholar
  8. 8.
    Hussein HF, Shabeeb GM, Hashim SS (2011). J Mater Env Sci 2(4):423–426Google Scholar
  9. 9.
    Ohyama M, Kozuka H, Yoko T (1997). Thin Solid Films 30(1):78–85CrossRefGoogle Scholar
  10. 10.
    Xian CJ, Ahn JK, Seong NJ, Yoon SG, Jang KH, Park WH (2008). J Phys 41(21):215107Google Scholar
  11. 11.
    Panigrahi S, Waugh S, Rout SK, Hassan AK, Ray AK (2004). Indian J Phys 78(8):823–826Google Scholar
  12. 12.
    Chakraborty M, Chowdhury D (2003). J Chem Educ 80(7):806CrossRefGoogle Scholar
  13. 13.
    Forrest SR, Fellow (2000). IEEE J Quantum Elect 6(6):1072–1083Google Scholar
  14. 14.
    Forrest SR (1997). Chem Rev 97:1793CrossRefGoogle Scholar
  15. 15.
    Zoromba M Sh, Hosny NM (2015). J Therm Anal Calorim 119(1):605–611Google Scholar
  16. 16.
    Hosny NM, Zoromba MS, Samir G, Alghool S (2016). J Mol Struct 1122:117–122CrossRefGoogle Scholar
  17. 17.
    Zoromba MS, El-Ghamaz NA, Alghool S (2015). J Inorg Organomet Polym 25:955–963CrossRefGoogle Scholar
  18. 18.
    Slimane AB, Al-Hossainy AF, Zoromba MS (2018). J Mater Sci Mater Electron:1–15Google Scholar
  19. 19.
    Zoromba MS, Alghool S, Abdel-Hamid S, Bassyouni M, Abdel-Aziz M (2016). Polym Adv Technol.
  20. 20.
    Zoromba MS, Nasser A, Ghamaz E (2016). Mater Express 6:5CrossRefGoogle Scholar
  21. 21.
    Badr AM, El-Amin AA, Al-Hossainy AF (2008). J Phys Chem C 112(36):14188–14195CrossRefGoogle Scholar
  22. 22.
    Luna-Martinez JF, Hernandez-Uresti DB (2011). Carbohydr Polym 84:566–570CrossRefGoogle Scholar
  23. 23.
    El Sayed AM, El-Gamal S, Morsi WM, Mohammed G (2015). J Mater Sci 50:4717–4728CrossRefGoogle Scholar
  24. 24.
    Zoromba MS (2017). Spectrochim Acta A Mol Biomol Spectrosc 187:61–67CrossRefGoogle Scholar
  25. 25.
    Al-Hossainy AF, Zoromba MS (2018). J Mol Struct 1156:83–90Google Scholar
  26. 26.
    Wu X, Ray AK (2002) Density-functional study of water adsorption on the PuO2 (110) surface. Phys Rev B Condens Matter 65:85403–85409CrossRefGoogle Scholar
  27. 27.
    Modeling and Simulation Solutions for Chemicals and Materials Research, Materials Studio (Version 5.0), Accelrys software Inc., San Diego, USA, 2009Google Scholar
  28. 28.
    Hehre WJ, Radom L, Schlyer PVR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New YorkGoogle Scholar
  29. 29.
    Kessi A, Delley B (1998) Density functional crystal vs. cluster models as applied to zeolites. Int J Quantum Chem 68:135–144CrossRefGoogle Scholar
  30. 30.
    Hammer B, Hansen LB, Nørskov JK (1999) Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys Rev B Condens Matter 59:7413CrossRefGoogle Scholar
  31. 31.
    Matveev A, Staufer M, Mayer M, Rösch N (1999) Density functional study of small molecules and transition-metal carbonyls using revised PBE functionals. Int J Quantum Chem 75:863–873CrossRefGoogle Scholar
  32. 32.
    Badr AM, EL-Amin AA, Al-Hossainy AF (2006). Eur Phys J B 53(4):439–448CrossRefGoogle Scholar
  33. 33.
    Henderson MJ, Hillmana AR, Vieil E (1998). J Electroanal Chem 454(1–2):1–8CrossRefGoogle Scholar
  34. 34.
    Karidi K, Garoufis A, Hadjiliadis N, Lutz M, Spek AL, Reedijk J (2006). Inorg Chem 45(25):10282–10292CrossRefGoogle Scholar
  35. 35.
    Elsayed SA, Butler IS, Claude BJ, Mostafa SI (2015). Transit Met Chem 40(2):179–187CrossRefGoogle Scholar
  36. 36.
    Popovic Z, Calogovic DM, Hasic J, Topic DV (1999). Inorg Chim Acta 285:208CrossRefGoogle Scholar
  37. 37.
    Soliman IM, El-Nahass MM, Mansou Y (2016). Solid State Commun 225:17–21CrossRefGoogle Scholar
  38. 38.
    Nakamoto K (1986) Infrared and Raman spectra of inorganic and coordination compounds, 4th edn. Wiley, New YorkGoogle Scholar
  39. 39.
    Colthup NB, Daly LH, Wiberley SE (1975) Introduction to infrared and Raman spectroscopy. Academic Press, New YorkGoogle Scholar
  40. 40.
    Andrade EM, Molina FV, Florit MI, Posadas D (1996). J Electronal Chem 419(1):15–21CrossRefGoogle Scholar
  41. 41.
    Axelson JC, Gonzalez MI, Meihaus KR, Chang CJ, Long JR (2016). Inorg Chem 55(15):7527–7534CrossRefGoogle Scholar
  42. 42.
    El-Asmy HA, Butler IS, Mouhri ZS, Jean-Claude BJ, Emmam MS, Mostafa SI (2014). J Mol Struct 1059:193–201CrossRefGoogle Scholar
  43. 43.
    El-Morsy FA, Jean-Claude BJ, Butler IS, El-Sayed SA, Mostafa SI (2014). Inorg Chim Acta 423:144–155CrossRefGoogle Scholar
  44. 44.
    El-Nahass MM, Zeyada HM, Aziz MS, El-Ghamaz NA (2004). Opt Mater 27(3):491–498CrossRefGoogle Scholar
  45. 45.
    Hassan FM, Al-Hossainy AF, Mohamed AE (2009). Phosphorus Sulfur Silicon 184:2996–3022CrossRefGoogle Scholar
  46. 46.
    Honle W, Schnering HG (1981). Z Krist 155:307–314 Zur Struktur von LiP und KSb, Locality: synthetic_database_code_amcsd 0018970Google Scholar
  47. 47.
    Smyth JR (1973). Am Mineral 58:636–648 An orthopyroxene structure up to 850 C, T = 20 C_database_code_amcsd 0000362Google Scholar
  48. 48.
    Kyono A, Kimata M (2004) Structural variations induced by difference of the inert pair effect in the stibnite-bismuthinite solid solution series (Sb,Bi)2S3. Am Mineral 89:932–940 Sample: Sb0.387Bi1.613S3 _database_code_amcsd 0003559CrossRefGoogle Scholar
  49. 49.
    Hatakeyama T, Quinn FX (1999) Thermal analysis: fundamentals and applications to polymer science, National Institute of Materials and Chemical Research, John Wiley & Sons: Chichester, UKGoogle Scholar
  50. 50.
    Parr RG, Yang W (1989) Density-functional theory of atoms and molecules, vol. 16 of International series of monographs on chemistry, in, Oxford University Press, New YorkGoogle Scholar
  51. 51.
    Govindarajan M, Periandy S, Carthigayen K (2012) FT-IR and FT-Raman spectra, thermo dynamical behavior, HOMO and LUMO, UV, NLO properties, computed frequency estimation analysis and electronic structure calculations on α-bromotoluene. Spectrochim Acta A Mol Biomol Spectrosc 97:411–422CrossRefGoogle Scholar
  52. 52.
    Rakha T, El-Gammal O, Metwally H, El-Reash GA (2014) Synthesis, characterization, DFT and biological studies of (Z)-N′-(2-oxoindolin-3-ylidene) picolinohydrazide and its Co (II), Ni (II) and Cu (II) complexes. J Mol Struct 1062:96–109CrossRefGoogle Scholar
  53. 53.
    Domingo LR, Aurell MJ, Pérez P, Contreras R (2002) Quantitative characterization of the global electrophilicity power of common diene/dienophile pairs in Diels–Alder reactions. Tetrahedron 58(22):4417–4423CrossRefGoogle Scholar
  54. 54.
    Padmanabhan J, Parthasarathi R, Subramanian V, Chattaraj PK (2007) Electrophilicity-based charge transfer descriptor. J Phys Chem A 111(7):1358–1361CrossRefGoogle Scholar
  55. 55.
    Yang W, Parr RG (1985) Hardness, softness, and the Fukui function in the electronic theory of metals and catalysis. Proc Natl Acad Sci USA 82:6723–6726CrossRefGoogle Scholar
  56. 56.
    Parr RG, Szentpaly LV, Liu S (1999). Electrophilicity index, JACS 121:1922–1924CrossRefGoogle Scholar
  57. 57.
    Politzer P, Truhlar DG (2013) Chemical applications of atomic and molecular electrostatic potentials: reactivity, structure, scattering, and energetics of organic, inorganic, and biological systems, Springer Science & Business Media, LLD, New YorkGoogle Scholar
  58. 58.
    Mulliken RS (1955) Electronic population analysis on LCAO–MO molecular wave functions. J Chem Phys 23:1833–1840CrossRefGoogle Scholar
  59. 59.
    Awad IM, Hassan FM, Mohamed AE, Al-Hossainy AF (2004). Phosphorus Sulfur Silicon 179:1–16CrossRefGoogle Scholar
  60. 60.
    Zhou ZH, Wan HL, Tsai KR (2000). Inorg Chem 39:59CrossRefGoogle Scholar
  61. 61.
    Kittel C (ed) (1996) Introduction to solid state physics, seventh ed. John Wiley & Sons, Inc, New YorkGoogle Scholar
  62. 62.
    Fenn M, Akuetey G, Donovan PE (1998) Electrical resistivity of Cu and Nb thin films. J Phys Condens Matter 10:1707–1720CrossRefGoogle Scholar
  63. 63.
    Leontie L, Roman M, Brinza F, Podaru C, Rusu GI (2003). Synth Met 138:157CrossRefGoogle Scholar
  64. 64.
    Leontie L, Roman M, Căplănus I, Rusu GI (2002). Prog Org Coat 44:287CrossRefGoogle Scholar
  65. 65.
    Ibrahim A, Al-Hossainy AF (2015). Synth Met 209:389–398CrossRefGoogle Scholar
  66. 66.
    Al-Hossainy AF, Abd-Elmageed AAI, Ibrahim AT (2015). Arab J Chem.
  67. 67.
    Al-Hossainy AF, Ibrahim A (2015). Mater Sci Semicond Process 38:13–23CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chemistry Department, Faculty of ScienceNew Valley UniversityNew ValleyEgypt
  2. 2.Chemistry Department, Faculty of ScienceNorthern Border UniversityArarSaudi Arabia
  3. 3.Chemical and Materials Engineering DepartmentKing Abdulaziz UniversityRabighSaudi Arabia
  4. 4.Chemistry Department, Faculty of SciencePort Said UniversityPort SaidEgypt
  5. 5.Chemistry Department, Faculty of ScienceMansoura UniversityMansouraEgypt

Personalised recommendations